Cryogenic-free VSM and ETO measurement system – Quantum Design, VersaLab (VERSALAB)
Guarantor:
Klára Jelénková
Instrument status:
Operational, 8.8.2024 13:29
Equipment placement:
CEITEC Nano - C1.56
This cryogen-free physical property measurement system (VERSALAB) is suitable for magnetic and electrical characterization. It is a vibrating sample magnetometer (VSM) with an electrical transport option (ETO), capable to apply a magnetic field up to 3 T within a temperature range from 50 K up to 400 K. In addition, it has an oven option for the VSM to extend the temperature up to 1000 K.
Publications:
-
MATTERN, M.; PUDELL, J.; ARREGI URIBEETXEBARRIA, J.; ZLÁMAL, J.; KALOUSEK, R.; UHLÍŘ, V.; RÖSSLE, M.; BARGHEER, M., 2024: Accelerating the Laser-Induced Phase Transition in Nanostructured FeRh via Plasmonic Absorption. ADVANCED FUNCTIONAL MATERIALS 34(32), doi: 10.1002/adfm.202313014; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, ICON-SPM, WOOLLAM-VIS) -
Hong, N. H.; Friák, M.; Pazourek, P.; Pham, N. S.; Nhu, T. Q.; Kiaba, M.; Gazdová, K.; Pavlů, J., 2024: 2D nature of magnetic states at SnO2 surfaces: a combined experimental and theoretical study. RSC ADVANCES 14(19), p. 13583 - 13590, doi: 10.1039/D4RA00734D; FULL TEXT
(RIGAKU3, VERSALAB, WOOLLAM-VIS, KRATOS-XPS) -
Štindl, J., 2024: Correlative imaging of magnetic order in antiferromagnets. BACHELOR´S THESIS , p. 1 - 44; FULL TEXT
(VERSALAB, KERR-MICROSCOPE, HELIOS, SAW-ACCUTOM, US-CUTTER, TITAN) -
Hrdinová, S., 2024: Influence of the epitaxial strain at the lateral thin film-stripe interface on the Ferromagnetic-Antiferromagnetic phase coexistence in FeRh. BACHELOR´S THESIS , p. 1 - 49; FULL TEXT
(MAGNETRON, VERSALAB, ICON-SPM) -
Castellano, A.; Alhada-Lahbabi, K.; Arregi, JA.; Uhlir, V.; Perrin, B.; Gourdon, C.; Fournier, D.; Verstraete, MJ.; Thevenard, L., 2024: Magnetic phase dependency of the thermal conductivity of FeRh from thermoreflectance experiments and numerical simulations. PHYSICAL REVIEW MATERIALS 8(8), doi: 10.1103/PhysRevMaterials.8.084411; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, WOOLLAM-VIS)
-
MATTERN, M.; JARECKI, J.; ARREGI URIBEETXEBARRIA, J.; UHLÍŘ, V.; RÖSSLE, M.; BARGHEER, M., 2024: Speed limits of the laser-induced phase transition in FeRh. APL MATERIALS 12(5), doi: 10.1063/5.0206095; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9) -
Otýpka, M., 2024: Electric-current Control of Magnetic Textures in Synthetic Antiferromagnets. BACHELOR´S THESIS , p. 1 - 56; FULL TEXT
(MAGNETRON, VERSALAB, DWL, WIRE-BONDER, KERR-MICROSCOPE) -
OURDANI, D.; CASTELLANO, A.; VYTHELINGUM, A.; ARREGI URIBEETXEBARRIA, J.; UHLÍŘ, V.; PERRIN, B.; BELMEGUENAI, M.; ROUSSIGNÉ, Y.; GOURDON, C.; VERSTRAETE, M.; THEVENARD, L., 2024: Experimental determination of the temperature- and phase-dependent elastic constants of FeRh. PHYSICAL REVIEW B 110(1), doi: 10.1103/PhysRevB.110.014427; FULL TEXT
(MAGNETRON, VERSALAB) -
Tichý, M., 2024: In-situ analysis of magnetic phase transition in FeRh using transmission electron microscopy. BACHELOR´S THESIS , p. 1 - 48; FULL TEXT
(VERSALAB, HELIOS, TITAN) -
Hnilica, J., 2023: Current-induced domain wall propagation in ferrimagnetic wires. MASTER´S THESIS ; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, SUSS-RCD8, DWL, WIRE-BONDER, KERR-MICROSCOPE) -
ARREGI URIBEETXEBARRIA, J.; RINGE, F.; HAJDUČEK, J.; GOMONAY, O.; MOLNÁR, T.; JASKOWIEC, J.; UHLÍŘ, V., 2023: Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh. JOURNAL OF PHYSICS: MATERIALS 6(3), p. 1 - 15, doi: 10.1088/2515-7639/acce6f; FULL TEXT
(MAGNETRON, KERR-MICROSCOPE, VERSALAB, RIGAKU9, ICON-SPM, HELIOS, TITAN) -
Klimek, J., 2023: Pulsed laser deposition of thin films of ferromagnetic oxides and investigation of their magnetic properties. BACHELOR´S THESIS , p. 1 - 32; FULL TEXT
(ICON-SPM, KRATOS-XPS, VERSALAB, CRYOGENIC) -
MOTYČKOVÁ, L.; ARREGI URIBEETXEBARRIA, J.; STAŇO, M.; PRŮŠA, S.; ČÁSTKOVÁ, K.; UHLÍŘ, V., 2023: Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets. ACS APPLIED MATERIALS & INTERFACES 15(6), p. 8653 - 13, doi: 10.1021/acsami.2c20107; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, UHV-LEIS, VERIOS, ICON-SPM) -
TAKHSHA GHAHFAROKHI, M.; FURLANI, F.; PANSERI, S.; CASOLI, F.; UHLÍŘ, V.; ALBERTINI, F., 2023: Magnetic Shape-Memory Heuslers Turn to Bio: Cytocompatibility of Ni-Mn-Ga Films and Biomedical Perspective. ACS APPLIED BIO MATERIALS 6(11), p. 5009 - 9, doi: 10.1021/acsabm.3c00691; FULL TEXT
(VERIOS, VERSALAB) -
ORAL, Ç.; USSIA, M.; URSO, M.; SALÁT, J.; NOVOBILSKÝ, A.; ŠTEFÁNIK, M.; RŮŽEK, D.; PUMERA, M., 2023: Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. ADVANCED HEALTHCARE MATERIALS 12(8), doi: 10.1002/adhm.202202682; FULL TEXT
(VERIOS, MIRA-STAN, RIGAKU3, VERSALAB) -
URSO, M.; USSIA, M.; NOVOTNÝ, F.; PUMERA, M., 2022: Trapping and detecting nanoplastics by MXene-derived oxide microrobots. NATURE COMMUNICATIONS 13(1), p. 3573-1 - 14, doi: 10.1038/s41467-022-31161-2; FULL TEXT
(LEICACOAT-NANO, MIRA-STAN, RIGAKU9, KRATOS-XPS, VERSALAB) -
MUNOZ MARTIN, J.; URSO, M.; PUMERA, M., 2022: Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for ´Enantiorecogniton-on-the-Fly´. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 61(14), p. 1 - 7, doi: 10.1002/anie.202116090; FULL TEXT
(MIRA-STAN, VERSALAB) -
Kiaba, M.; Caha, O.; Abadizaman, F.; Dubroka, A., 2022: Stabilization of the oxygen concentration in La0.3Sr0.7CoO3−δ thin films by 3 nm thin LaAlO3 capping layer. THIN SOLID FILMS 759, doi: 10.1016/j.tsf.2022.139438; FULL TEXT
(RIGAKU9, VERSALAB) -
HORKÝ, M.; ARREGI URIBEETXEBARRIA, J.; PATEL, S.; STAŇO, M.; MEDAPALLI, R.; CAHA, O.; VOJÁČEK, L.; HORÁK, M.; UHLÍŘ, V.; FULLERTON, E., 2022: Controlling the Metamagnetic Phase Transition in FeRh/MnRh Superlattices and Thin-Film Fe50-xMnxRh50 Alloys. ACS APPLIED MATERIALS & INTERFACES 14(2), p. 3568 - 12, doi: 10.1021/acsami.1c22460; FULL TEXT
(VERSALAB, RIGAKU9, HELIOS, TITAN, ICON-SPM) -
Velič, A., 2022: Optical study of laser-induced magnetic phase transitions. BACHELOR´S THESIS , p. 1 - 42; FULL TEXT
(MAGNETRON, VERSALAB, KERR-MICROSCOPE, ULTRAFAST-LASER) -
TURČAN, I.; FLAJŠMAN, L.; WOJEWODA, O.; ROUČKA, V.; MAN, O.; URBÁNEK, M., 2021: Spin wave propagation in corrugated waveguides. APPLIED PHYSICS LETTERS 118(9), p. 1 - 5, doi: 10.1063/5.0041138; FULL TEXT
(HELIOS, RAITH, KERR-MICROSCOPE, VERSALAB, VNA-MPI, BRILLOUIN, LYRA, ICON-SPM) -
Hajduček, J., 2021: Imaging of metamagnetic thin films using TEM. MASTER´S THESIS , p. 1 - 78; FULL TEXT
(MAGNETRON, VERSALAB, MIRA-EBL, HELIOS, TITAN) -
GHAHFAROKHI, M.; ARREGI URIBEETXEBARRIA, J.; CASOLI, F.; HORKÝ, M.; CABASSI, R.; UHLÍŘ, V.; ALBERTINI, F., 2021: Microfabricated ferromagnetic-shape-memory Heuslers: The geometry and size effects. APPLIED MATERIALS TODAY 23, p. 101058-1 - 11, doi: 10.1016/j.apmt.2021.101058; FULL TEXT
(VERSALAB, RIGAKU9, KERR-MICROSCOPE, SUSS-MA8, RIE-FLUORINE, EVAPORATOR, WIRE-BONDER, VERIOS) -
PRESSACCO, F.; SANGALLI, D.; UHLÍŘ, V.; KUTNYAKHOV, D.; ARREGI URIBEETXEBARRIA, J.; AGUSTSSON, S.; BRENNER, G.; REDLIN, H.; HEBER, M.; VASILYEV, D.; DEMSAR, J.; SCHÖNHENSE, G.; GATTI, M.; MARINI, A.; WURTH, W.; SIROTTI, F., 2021: Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics. NATURE COMMUNICATIONS 12(1), p. 5088-1 - 8, doi: 10.1038/s41467-021-25347-3; FULL TEXT
(MAGNETRON, RIGAKU9, VERSALAB) -
Hnilica, J., 2021: Deposition of low-damping metamagnetic thin films. BACHELOR´S THESIS , p. 1 - 57; FULL TEXT
(MAGNETRON, VERSALAB, VNA-MPI) -
Vaňatka, M., 2021: Static and dynamic properties of nanostructured magnetic materials. PH.D. THESIS , p. 1 - 113; FULL TEXT
(VERSALAB, VNA-MPI, TITAN, BRILLOUIN, MIRA-EBL, RAITH, KERR-MICROSCOPE, MAGNETRON, EVAPORATOR, VERIOS, WIRE-BONDER, LYRA) -
Zadorozhnii, O., 2021: Exchange bias in metamagnetic heterostructures. MASTER´S THESIS , p. 1 - 81; FULL TEXT
(MAGNETRON, VERSALAB, KERR-MICROSCOPE, RAITH, RIE-FLUORINE, UHV-DEPOSITION, UHV-PREPARATION, UHV-XPS, LYRA) -
VON REPPERT, A.; WILLIG, L.; PUDELL, J.; ZEUSCHNER, S.; SELLGE, G.; GANSS, F.; HELLWIG, O.; ARREGI URIBEETXEBARRIA, J.; UHLÍŘ, V.; CRUT, A.; BARGHEER, M., 2020: Spin stress contribution to the lattice dynamics of FePt. SCIENCE ADVANCES 6(28), p. 1 - 7, doi: 10.1126/sciadv.aba1142; FULL TEXT
(VERSALAB, RIGAKU9) -
Motyčková, L., 2020: Magnetic properties of self-assembled FeRh nanomagnets. MASTER´S THESIS , p. 1 - 90; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, VERIOS, KERR-MICROSCOPE, ICON-SPM) -
UHLÍŘ, V.; PRESSACCO, F.; ARREGI URIBEETXEBARRIA, J.; PROCHÁZKA, P.; PRŮŠA, S.; POTOČEK, M.; ŠIKOLA, T.; ČECHAL, J.; BENDOUNAN, A.; SIROTTI, F., 2020: Single-layer graphene on epitaxial FeRh thin films. APPLIED SURFACE SCIENCE 514, p. 145923-1 - 7, doi: 10.1016/j.apsusc.2020.145923; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, UHV-LEEM, UHV-LEIS, UHV-SPM, UHV-PREPARATION, UHV-XPS, SIMS) -
ARREGI URIBEETXEBARRIA, J.; CAHA, O.; UHLÍŘ, V., 2020: Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. PHYSICAL REVIEW B 101(17), p. 174413-1 - 14, doi: 10.1103/PhysRevB.101.174413; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9) -
Vojáček, L., 2019: Magneto-optical investigation of spintronic materials. BACHELOR´S THESIS , p. 1 - 51; FULL TEXT
(MAGNETRON, VERSALAB) -
Hajduček, J., 2019: Substrate-controlled nucleation of the magnetic phase transtition in nanostructures. BACHELOR´S THESIS , p. 1 - 46
(MAGNETRON, CRYOGENIC, MIRA-EBL, RIE-FLUORINE, EVAPORATOR, VERSALAB, ICON-SPM) -
Jaskowiec, J., 2019: Spatial confinement effects in metamagnetic nanostructures. MASTER´S THESIS , p. 1 - 55
(MAGNETRON, MIRA-EBL, RAITH, CRYOGENIC, VERSALAB, ICON-SPM)
Photogallery:
Specification:
The VersaLab VSM option is a fast and sensitive DC magnetometer that consists primarily of a linear motor transport (VSM head) for vibrating the sample and a coil set for detection (pickup coil). The basic measurement is performed by oscillating the sample near the pickup coil and synchronously detecting the voltage induced. With a relatively large oscillation amplitude (1–3 mm peak) and a frequency of 40 Hz, the system can resolve magnetization changes of less than 1 µemu with 1 s data averaging. Two sets of coils (standard and large) are available for different sample sizes. In case of flat samples (e.g. thin film on substrate) measurements in both in-plane and out-of-plane configurations are possible (out-of-plane configuration only for large coilset). For most uses, the standard coilset puck provides the best trade-off between sensitivity and accuracy. The sensitivity is not significantly affected by large magnetic fields, so the VSM can perform sensitive measurements up to the maximum field of 3 T. The standard working temperature range of the VersaLab (50–400 K) could be extended for the VSM option up to 1000 K thanks to the Oven kit, for which it is necessary to use a special sample holder.
The VersaLab ETO supports three types of measurements: resistance, IV curves and differential resistance, over a wide range of resistance values. Measurements are usually made by applying a sinusoidal AC drive current and measuring the AC voltage response. However, a special 2-wire high resistance mode is available where an AC voltage is applied, and the AC current response is measured with a current amplifier. The ETO’s current source has a range from 1 nA to a maximum current of 100 mA, and it is capable of supplying both DC and AC current with frequencies from 0.1 Hz to 200 Hz. Three preamplifiers in conjunction with the current source get the ETO a noise floor of 10 nΩ and allow measurements of resistances up to 5 GΩ. A break-out box is available for changing the bonded connections within all three channels.
Sample requirements:
In case of VSM there are more sample holder possibilities:
- Polypropylene capsules in brass trough - powder samples fitted in the capsules.
- Quartz holders - thin films on substrates attached to quartz holder using special glue, in-plane measurements only. Sample size is max. 5x5 mm for standard coilset, max. 10x10 mm for large coilset.
- Straws - thin films on substrates or bulk samples, both in-plane and out-of-plane measurements possible. Sample size is limited by the straw dimensions.
- Heated holder for oven option - sample should be no wider than 3 mm, ideal sample geometry is a thin plate. The sample is attached to the holder using special alumina cement.
In case of ETO there are pucks available for samples (max. 10x10 mm) both for out-of-plane and in-plane sample orientation. The electrical connections from the sample to the puck are made by the wire bonder. In case of smaller samples there can be attached two samples on one puck whereas each of the samples is attached to a separate measurement channel.
VSM option
RMS sensitivity | < 1 µemu with 1 sec averaging |
---|---|
Sample size in XY plane | 5 mm for standard coilset, 10 mm for big coilset |
Position in Z axis | approx. 33 mm from the bottom (automatic centering available) |
Temperature range | 50 - 400 K, and up to 1000 K with Oven kit |
Magnetic field range | 3 T max. |
ETO option
Sensitivity | 1 nV at 100 mA |
---|---|
Resolution | 10 nW at 100 mA |
DC and AC drive amplitude | 10 nA to 100 mA |
Resistance range | 10 µΩ to 5 GΩ |
Temperature range | 50 - 400 K |
Magnetic field range | 3 T max. |
Documents:
Link to official instrument manuals (access for CEITEC Nano users only after login):
official instrument manuals - VERSALAB
For more documentation created by CEITEC Nano see the "Document Library" section.