High vacuum coating system for electron microscopy Leica Microsystems EM ACE 600 (LEICACOAT-NANO)
Guarantor:
Vojtěch Švarc, Ph.D.
Instrument status:
Operational, 28.8.2023 14:30
Equipment placement:
CEITEC Nano - C1.20
High vacuum coater for deposition of conductive coatings on SEM and TEM samples. Processes are driven by bulit-in microprocessor control unit and are fully automatized. Process steps and parameters are set through a touch screen. Equipped with Au sputter target and carbon thread evaporation source as standard.
Other available targets for the sputtering are: Cr, W, Co, Ti, Al, Pt/Pd.
Publications:
-
PONGRÁCZ, J.; VACEK, P.; GRÖGER, R., 2023: Recombination activity of threading dislocations in MOVPE-grown AlN/Si {111} films etched by phosphoric acid. JOURNAL OF APPLIED PHYSICS 134(19), doi: 10.1063/5.0171937; FULL TEXT
(LYRA, ICON-SPM, HELIOS, TITAN, LEICACOAT-NANO) -
TKACHENKO, S.; BEDNAŘÍKOVÁ, V.; KSENZOVA, O.; REMEŠOVÁ, M.; SLÁMEČKA, K.; CIHLÁŘ, J.; BALÁŽ, M.; DEÁK, A.; ČELKO, L., 2023: Microstructure and reduction behavior of Mo powders doped with La2O3 and ZrO2 oxides using the spray drying method. JOURNAL OF ALLOYS AND COMPOUNDS 264, doi: 10.1016/j.jallcom.2023.171307; FULL TEXT
(RIGAKU3, LYRA, KRATOS-XPS, LEICACOAT-NANO) -
MILOSAVLJEVIĆ, V.; KOŠARIŠŤANOVÁ, L.; DOLEŽELÍKOVÁ, K.; ADAM, V.; PUMERA, M., 2022: Microrobots with Antimicrobial Peptide Nanoarchitectonics for the Eradication of Antibiotic-Resistant Biofilms. ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS 32(43), p. 1 - 11, doi: 10.1002/adfm.202112935; FULL TEXT
(LEICACOAT-NANO, MIRA-EBL, MIRA-STAN, KRATOS-XPS) -
URSO, M.; USSIA, M.; NOVOTNÝ, F.; PUMERA, M., 2022: Trapping and detecting nanoplastics by MXene-derived oxide microrobots. NATURE COMMUNICATIONS 13(1), p. 3573-1 - 14, doi: 10.1038/s41467-022-31161-2; FULL TEXT
(LEICACOAT-NANO, MIRA-STAN, RIGAKU9, KRATOS-XPS, VERSALAB) -
Jancik-Prochazkova, A.; Mayorga-Martinez, C. C.; Vyskočil, J.; Pumera, M., 2022: Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal. ACS APPLIED MATERIALS & INTERFACES 14(40), p. 45545 - 45552, doi: 10.1021/acsami.2c09527; FULL TEXT
(LEICACOAT-NANO, MIRA-STAN, FTIR)
-
KADIEV, M.; SHUAIBOV, A.; ABDURAKHMANOV, M.; SELIMOV, D.; GULAKHMEDOV, R.; RABADANOVA, A.; SMEJKALOVÁ, T.; SOBOLA, D.; ČÁSTKOVÁ, K.; RAMAZANOV, S.; ORUDZHEV, F., 2022: Synthesis and Investigation of Piezophotocatalytic Properties of Polyvinylidene Fluoride Nanofibers Modified with Titanium Dioxide. MOSCOW UNIVERSITY CHEMISTRY BULLETIN , p. 256 - 6, doi: 10.3103/S0027131422050054; FULL TEXT
(LEICACOAT-NANO, LYRA) -
Slavík, J., 2021: Patterning of excitable cells on multi-electrode arrays. PH.D. THESIS , p. 1 - 102; FULL TEXT
(DWL, EVAPORATOR, PARYLENE-SCS, RIE-FLUORINE, MAGNETRON, LEICACOAT-NANO, LYRA, ICON-SPM) -
REMEŠOVÁ, M.; TKACHENKO, S.; KVARDA, D.; ROČŇÁKOVÁ, I.; GOLLAS, B.; MENELAOU, M.; ČELKO, L.; KAISER, J., 2020: Effects of anodizing conditions and the addition of Al2O3/PTFE particles on the microstructure and the mechanical properties of porous anodic coatings on the AA1050 aluminium alloy. APPLIED SURFACE SCIENCE , p. 1 - 10, doi: 10.1016/j.apsusc.2020.145780; FULL TEXT
(TEGRAMIN, LEICACOAT-NANO, LYRA) -
Manakhov, A; Kedronova, E; Medalova, J; Cernochova, P; Obrusnik, A; Michlicek, M; Shtansky, DV; Zajickova, L, 2017: Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. MATERIALS & DESIGN 132, p. 257 - 265, doi: 10.1016/j.matdes.2017.06.057
(LEICACOAT-NANO, KRATOS-XPS, LYRA)
Photogallery
Specification
Here is place to edit your specification.
Documents
Here is place for your documents.