Coater Leica EM ACE600 (LEICACOAT-STAN)
Guarantor:
Jiří Holas
Instrument status:
Operational, 11.11.2024 13:33
Equipment placement:
CEITEC Nano - A1.08
´High vacuum coater for deposition of conductive coatings on SEM and TEM samples. Processes are driven by built-in microprocessor control unit and are fully automatized. Process steps and parameters are set through a touch screen.
Equipped with Au sputter target and carbon thread evaporation source as standard.
Other targets for sputtering are available by the same device located in building C.´
Publications:
-
NATARAJAN, S.; ORAL, Ç.; NOVOBILSKÝ, A.; PUMERA, M., 2024: Intelligent Magnetic Microrobots with Fluorescent Internal Memory for Monitoring Intragastric Acidity. ADVANCED FUNCTIONAL MATERIALS 34(29), p. 1 - 12, doi: 10.1002/adfm.202401463; FULL TEXT
(FTIR-CHEMLAB, VERIOS, MIRA-STAN, LEICACOAT-STAN, RIGAKU3) -
Sitek, T., 2024: Thermal decomposition of solid biofuels and associated fine particle generation. PH.D. THESIS ; FULL TEXT
(LYRA, LEICACOAT-STAN) -
Chennam, P. K.; Kachlík, M.; Říhová, M.; Čičmancová, V.; Maca, K.; Macak, J. M., 2024: Synthesis of centrifugally spun polyacrylonitrile-carbon fibers. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 28, p. 2199 - 2205, doi: 10.1016/j.jmrt.2023.12.146; FULL TEXT
(RIGAKU3, WITEC-RAMAN, VERIOS, LEICACOAT-STAN, FTIR) -
SEDLÁŘ, M.; VERČIMÁKOVÁ, K.; FOHLEROVÁ, Z.; IZSÁK, D.; CHALUPOVÁ, M.; SUCHÝ, P.; DOHNALOVÁ, M.; SOPUCH, T.; VOJTOVÁ, L., 2023: A synergistic effect of fibrous carboxymethyl cellulose with equine collagen improved the hemostatic properties of freeze-dried wound dressings. CELLULOSE , p. 1 - 19, doi: 10.1007/s10570-023-05571-4; FULL TEXT
(LEICACOAT-STAN, MIRA-STAN) -
VISHAKHA, V.; ABDELLATIF, A.; MICHALIČKA, J.; WHITE, P.; LEPCIO, P.; TINOCO NAVARRO, L.; JANČÁŘ, J., 2023: Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carriers. ROYAL SOCIETY OPEN SCIENCE 10(10), p. 1 - 17, doi: 10.1098/rsos.230829; FULL TEXT
(ZETASIZER, RIGAKU3, VERIOS, MIRA-STAN, LEICACOAT-STAN, TITAN, FTIR-CHEMLAB, KRATOS-XPS, JASCO)
-
ORUDZEV, F.; SELIMOV, D.; RABADANOVA, A.; SHUAIBOV, A.; ABDURAKHAMANOV, M;. GULAKHMEDOV, R.; PAPEZ, N.; SHIKHGASAN, R.; ZVEREVA, I.; CASTKOVA, K., 2023: 1D/2D Electrospun Polyvinylidene Fluoride Nanofibers/Carbon Flakes Hybrid Nonmetal Polymeric Photo- and Piezocatalyst. CHEMISTRYSELECT 8(43), p. 1 - 11, doi: 10.1002/slct.202303318; FULL TEXT
(WITEC-RAMAN, KRATOS-XPS, VERIOS, LEICACOAT-STAN, FTIR, RIGAKU3) -
JANŮ, L.; DVOŘÁKOVÁ, E.; POLÁŠKOVÁ, K.; BUCHTELOVÁ, M.; RYŠÁNEK, P.; CHLUP, Z.; KRUML, T.; GALMIZ, O.; NEČAS, D.; ZAJÍČKOVÁ, L., 2023: Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric. POLYMERS 15(7), p. 1 - 17, doi: 10.3390/polym15071686; FULL TEXT
(LYRA, LEICACOAT-STAN, KRATOS-XPS, SEE-SYSTEM) -
Riley, J. A.; Horák, M.; Křápek, V.; Healy, N.; Pacheco-Peña, V., 2023: Plasmonic sensing using Babinet´s principle. NANOPHOTONICS , doi: 10.1515/nanoph-2023-0317; FULL TEXT
(LEICACOAT-STAN, HELIOS, TITAN) -
ŠŤASTNÝ, P.; CHLUP, Z.; HLINIČAN, J.; KAŠTYL, J.; TRUNEC, M., 2023: Effect of cyclic loading on the microstructure of thin zirconia tapes. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 43(10), p. 4498 - 8, doi: 10.1016/j.jeurceramsoc.2023.03.024; FULL TEXT
(VERIOS, HELIOS, LEICACOAT-STAN, RIGAKU3, WITEC-RAMAN) -
DEÁK, A.; SZABÓ, P.; BEDNAŘÍKOVÁ, V.; CIHLÁŘ, J.; DEMETER, A.; REMEŠOVÁ, M.; COLACINO, E.; ČELKO, L., 2023: The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphy. FRONTIERS IN CHEMISTRY 11, doi: 10.3389/fchem.2023.1178225; FULL TEXT
(RIGAKU3, KRATOS-XPS, MIRA-STAN, VERIOS, LEICACOAT-STAN) -
SEVRIUGINA, V.; PAVLIŇÁK, D.; ONDREÁŠ, F.; JAŠEK, O.; ŠTAFFOVÁ, M.; LEPCIO, P., 2023: Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion. ACS OMEGA 8(48), p. 45566 - 12, doi: 10.1021/acsomega.3c05683; FULL TEXT
(KRATOS-XPS, WITEC-RAMAN, BET-DEGASSER, MIRA-STAN, FTIR-CHEMLAB, LEICACOAT-STAN) -
Jancik-Prochazkova, A.; Michalkova, H.; Heger, Z.; Pumera, M., 2023: Hydrogen Bonding Nanoarchitectonics of Organic Pigment-Based Janus Microrobots with Entering Capability into Cancer Cells. ACS NANO 17(1), p. 146 - 156, doi: 10.1021/acsnano.2c05585; FULL TEXT
(VERIOS, MIRA-STAN, LEICACOAT-STAN, FTIR) -
LEPCIO, P.; SVATÍK, J.; ŠTAFFOVÁ, M.; LESSER, A.; ONDREÁŠ, F., 2022: Revealing the Combined Nanoconfinement Effect by Soft and Stiff Inclusions in PMMA/Silica CO2 Blown Foams. MACROMOLECULAR MATERIALS AND ENGINEERING 307(11), p. 1 - 9, doi: 10.1002/mame.202200403; FULL TEXT
(MIRA-STAN, LEICACOAT-STAN, FTIR-CHEMLAB) -
LEPCIO, P.; SVATÍK, J.; REŽNÁKOVÁ, E.; ZICHA, D.; LESSER, A.; ONDREÁŠ, F., 2022: Anisotropic solid-state PLA foaming templated by crystal phase pre-oriented with 3D printing: cell supporting structures with directional capillary transfer function. JOURNAL OF MATERIALS CHEMISTRY B 10(15), p. 2889 - 10, doi: 10.1039/d1tb02133h; FULL TEXT
(MIRA-STAN, FTIR-CHEMLAB, LEICACOAT-STAN) -
Krizek, F.; Reimers, S.; Kaspar, Z.; Marmodoro, A.; Michalicka, J.; Man, O.; Edstrom, A.; Amin, OJ.; Edmonds, KW.; Campion, RP.; Maccherozzi, F. ; Dhesi, SS.; Zubac, J.; Kriegner, D.; Carbone, D.; Zelezny, J. ; Vyborny, K.; Olejnik, K.; Novak, V.; Rusz, J.; Idrobo, JC.; Wadley, P.; Jungwirth, T., 2022: Atomically sharp domain walls in an antiferromagnet. SCIENCE ADVANCES 8(13), p. eabn3535-1 - 10, doi: 10.1126/sciadv.abn3535; FULL TEXT
(TITAN, LEICACOAT-STAN, HELIOS) -
TKACHENKO, S.; ČELKO, L.; REMEŠOVÁ, M.; BEDNAŘÍKOVÁ, V.; DVOŘÁK, K.; KOMAROV, P.; ZÁBRANSKÝ, K., 2022: Microstructure of Mo-La2O3 Composite Powder Prepared Using Two Different High Energy Ball Milling Systems. SOLID STATE PHENOMENA 334, p. 109 - 6, doi: 10.4028/p-a18wu2; FULL TEXT
(LEICACOAT-STAN, RIGAKU3, LYRA) -
JAQUES, V.; ZIKMUNDOVÁ, E.; HOLAS, J.; ZIKMUND, T.; KAISER, J.; HOLCOVÁ, K., 2022: Conductive cross-section preparation of non-conductive painting micro-samples for SEM analysis. SCIENTIFIC REPORTS 12(1), doi: 10.1038/s41598-022-21882-1; FULL TEXT
(MIRA-STAN, CITOPRESS, LEICACOAT-STAN, TEGRAMIN) -
NOVCIC, K.; IFFELSBERGER, C.; PUMERA, M., 2022: Layered MAX phase electrocatalyst activity is driven by only a few hot spots. JOURNAL OF MATERIALS CHEMISTRY A , p. 3206 - 10, doi: 10.1039/d1ta06419c; FULL TEXT
(RIGAKU9, MIRA-STAN, LEICACOAT-STAN, ICON-SPM) -
ČELKO, L.; TKACHENKO, S.; CASAS LUNA, M.; DYČKOVÁ, L.; BEDNAŘÍKOVÁ, V.; REMEŠOVÁ, M.; KOMAROV, P.; DEÁK, A.; BALÁŽ, M.; CRAWFORD, D.; DÍAZ DE LA TORRE, S.; BODOKI, E.; CIHLÁŘ, J., 2022: High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS 102, p. 1 - 13, doi: 10.1016/j.ijrmhm.2021.105717; FULL TEXT
(RIGAKU3, LEICACOAT-STAN, LYRA) -
ŠTAFFOVÁ, M.; ONDREÁŠ, F.; SVATÍK, J.; ZBONČÁK, M.; JANČÁŘ, J.; LEPCIO, P., 2022: 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. POLYMER TESTING 108, p. 1 - 11, doi: 10.1016/j.polymertesting.2022.107499; FULL TEXT
(FTIR-CHEMLAB, MIRA-STAN, LEICACOAT-STAN, LEXT) -
ŘÍHOVÁ, M.; LEPCIO, P.; ČIČMANCOVÁ, V.; FRUMAROVÁ, B.; HROMÁDKO, L.; BUREŠ, F.; VOJTOVÁ, L.; MACÁK, J., 2022: The centrifugal spinning of vitamin doped natural gum fibers for skin regeneration. CARBOHYDRATE POLYMERS (ELECTRONIC) 294, p. 1 - 10, doi: 10.1016/j.carbpol.2022.119792; FULL TEXT
(MIRA-STAN, FTIR-CHEMLAB, LEICACOAT-STAN, IR-RAMAN) -
JAQUES, V.; ZIKMUNDOVÁ, E.; HOLAS, J.; ZIKMUND, T.; KAISER, J.; HOLCOVÁ, K., 2022: Cyclododecane shaping, sublimation rate and residue analysis for the extraction of painting micro-samples from resin cross-sections. SCIENTIFIC REPORTS 12(1), p. 1 - 11, doi: 10.1038/s41598-022-22448-x; FULL TEXT
(LEICACOAT-STAN, MIRA-STAN, CITOVAC, TEGRAMIN) -
USSIA, M.; URSO, M.; KMENT, Š.; FIALOVÁ, T.; KLÍMA, K.; DOLEŽELÍKOVÁ, K.; PUMERA, M., 2022: Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. SMALL 18(22), p. 1 - 10, doi: 10.1002/smll.202200708; FULL TEXT
(MIRA-STAN, LEICACOAT-STAN) -
ORAL, Ç.; USSIA, M.; YAVUZ, D.; PUMERA, M., 2022: Shape Engineering of TiO2 Microrobots for ´On-the-Fly´ Optical Brake. SMALL 18(10), p. 21076271-6 - 6, doi: 10.1002/smll.202106271; FULL TEXT
(LEICACOAT-STAN, VERIOS, MIRA-STAN, RIGAKU3) -
ŘIHÁČEK, T.; HORÁK, M.; SCHACHINGER, T.; MIKA, F.; MATĚJKA, M.; KRÁTKÝ, S.; FOŘT, T.; RADLIČKA, T.; JOHNSON, C.; NOVÁK, L.; SEĎA, B.; MCMORRAN, B.; MÜLLEROVÁ, I., 2021: Beam shaping and probe characterization in the scanning electron microscope. ULTRAMICROSCOPY 225, p. 1 - 9, doi: 10.1016/j.ultramic.2021.113268; FULL TEXT
(HELIOS, LEICACOAT-STAN) -
Černohorský, P.; Pisarenko, T.; Papež, N.; Sobola, D.; Ţălu, Ş.; Částková, K.; Kaštyl, J.; Macků, R.; Škarvada, P.; Sedlák, P., 2021: Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. MATERIALS 14(20), doi: 10.3390/ma14206096; FULL TEXT
(FTIR, WITEC-RAMAN, KRATOS-XPS, HELIOS, LEICACOAT-STAN, SEE-SYSTEM, LYRA) -
ORUDZHEV, F.; RAMAZANOV, S.; SOBOLA, D.; KASPAR, P.; TRČKA, T.; ČÁSTKOVÁ, K.; KAŠTYL, J.; ZVEREVA, I.; WANG, C.; SELIMOV, D.; GULAKHMEDOV, R.; ABDURAKHMANOV, M.; SHUAIBOV, A.; KADIEV, M., 2021: Ultrasound and water flow driven piezophototronic effect in self-polarized flexible alpha-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. NANO ENERGY 90, p. 1 - 13, doi: 10.1016/j.nanoen.2021.106586; FULL TEXT
(FTIR, KRATOS-XPS, HELIOS, JAZ3-CHANNEL, LEICACOAT-STAN, WITEC-RAMAN) -
Horák, M., 2020: Electron microscopy and spectroscopy in plasmonics. PH.D. THESIS , p. 1 - 129; FULL TEXT
(TITAN, HELIOS, VERIOS, LEICACOAT-STAN, EVAPORATOR, MAGNETRON, MIRA-EBL, LYRA, ICON-SPM) -
HORÁK, M.; ŠIKOLA, T., 2020: Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. ULTRAMICROSCOPY 216, p. 1 - 9, doi: 10.1016/j.ultramic.2020.113044; FULL TEXT
(LEICACOAT-STAN, TITAN, HELIOS) -
NĚMČÁKOVÁ, I.; BLAHOVÁ, L.; RYŠÁNEK, P.; BLANQUER, A.; BAČÁKOVÁ, L.; ZAJÍČKOVÁ, L., 2020: Behaviour of Vascular Smooth Muscle Cells on Amine Plasma-Coated Materials with Various Chemical Structures and Morphologies. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 21(24), p. 1 - 24, doi: 10.3390/ijms21249467; FULL TEXT
(KRATOS-XPS, LEICACOAT-STAN, SEE-SYSTEM, LYRA) -
KŘÁPEK, V.; KONEČNÁ, A.; HORÁK, M.; LIGMAJER, F.; STÖGER-POLLACH, M.; HRTOŇ, M.; BABOCKÝ, J.; ŠIKOLA, T., 2020: Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. NANOPHOTONICS 9(3), p. 623 - 10, doi: 10.1515/nanoph-2019-0326; FULL TEXT
(HELIOS, MIRA-EBL, TITAN, LEICACOAT-STAN, FTIR, EVAPORATOR) -
KEJÍK, L.; HORÁK, M.; ŠIKOLA, T.; KŘÁPEK, V., 2020: Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. OPTICS EXPRESS 28(23), p. 34960 - 13, doi: 10.1364/OE.409428; FULL TEXT
(HELIOS, TITAN, LEICACOAT-STAN, DEKTAK, ICON-SPM) -
Remešová, M., 2020: Research and development of a technology of hard anodization of nonferrous alloys. PH.D. THESIS , p. 1 - 130
(LEICACOAT-STAN, HELIOS, TITAN, RIGAKU3, LYRA) -
MONTUFAR JIMENEZ, E.; TKACHENKO, S.; CASAS LUNA, M.; ŠKARVADA, P.; SLÁMEČKA, K.; DÍAZ DE LA TORRE, S.; KOUTNÝ, D.; PALOUŠEK, D.; KOLEDOVÁ, Z.; HERNÁNDEZ-TAPIA, L.; ZIKMUND, T.; ČELKO, L.; KAISER, J., 2020: Benchmarking of additive manufacturing technologies for commercially-pure-titanium bone-tissue-engineering scaffolds: processing-microstructure-property relationship. ADDITIVE MANUFACTURING , p. 1 - 13, doi: 10.1016/j.addma.2020.101516; FULL TEXT
(LEICACOAT-STAN, micro-CT-L240, RIGAKU3, LYRA)
Photogallery
Specification
Process vacuum | 5x10−5 mbar @ 15 min |
---|---|
Ultimate vacuum | 2x10−6 mbar @ 24 hour |
Working distance | min. 30 mm, max. 100 mm (z movement motorized) |
Specimen table | diameter 104 mm |
Stage tilt | +/- 60° (motorized) |
Coating time | 1–1800 s (without respect to sample damage) |
Coating thickness | 1–1000 nm |
Coating thickness detection | oscillating quartz crystal, readout resolution: one decimal (0.1 nm accuracy) |
Process gas for sputtering | Argon 99,99 % or better |
Venting gas | Nitrogen 99,99 % |
Available materials for deposition
Material | Deposition method | Deposition source |
---|---|---|
Carbon (C) | evaporation | carbon thread |
Gold (Au) | sputtering | target |
Documents
Application Note 1 - Deposition of layers of defined thickness using thickness monitor
Application Note 2 - Incorrect layer thickness
Documents
Here is place for your documents.