Ion-Beam Sputter Deposition System BESTEC (KAUFMAN)
Guarantor:
Imrich Gablech, Ph.D.
Instrument status:
Operational, 21.2.2023 09:01
Equipment placement:
CEITEC Nano - C1.36
UHV sputter deposition system is equipped with two RFICP Kaufman ion-beam sources (KRI®) with 4 cm diameter grids (3-grid primary and 2-grid assisted/secondary) and charge neutralizer (LFN 2000 - KRI®). This setup is suitable for Ion-beam sputter deposition, Ion-beam assisted deposition, reactive sputter deposition with nitrogen and in-situ initial/continual substrate (pre-)cleaning. Etching (ion-milling) is not possible due to undesirable chamber and targets contamination.
Publications:
-
Krčma, J., 2024: Controlled Excitation of Magnons through Optically Induced Mie Resonances in Periodic Dielectric Nanostructures. BACHELOR´S THESIS ; FULL TEXT
(EVAPORATOR, RAITH, RIE-FLUORINE, KAUFMAN, BRILLOUIN, VERIOS) -
AIGNER, A.; LIGMAJER, F.; ROVENSKÁ, K.; HOLOBRÁDEK, J.; IDESOVÁ, B.; MAIER, S.; TITTL, A.; MENEZES, L., 2024: Engineering of Active and Passive Loss in High-Quality-Factor Vanadium Dioxide-Based BIC Metasurfaces. NANO LETTERS 24(35), p. 10742 - 8, doi: 10.1021/acs.nanolett.4c01703; FULL TEXT
(KAUFMAN, ALD, EVAPORATOR) -
GABLECH, I.; MIGLIACCIO, L.; BRODSKÝ, J.; HAVLÍČEK, M.; PODEŠVA, P.; HRDÝ, R.; EHLICH, J.; GRYSZEL, M.; GLOWACKI, E., 2023: High-Conductivity Stoichiometric Titanium Nitride for Bioelectronics. ADVANCED ELECTRONIC MATERIALS 9(4), p. 1 - 11, doi: 10.1002/aelm.202200980; FULL TEXT
(KAUFMAN, PARYLENE-SCS, KRATOS-XPS, RIGAKU3, KEITHLEY-4200, LYRA, ICON-SPM) -
Jarušek, J., 2022: Sputtering of nitride layers using Kaufman ion-beam source for bioelectronics applications. BACHELOR´S THESIS , p. 1 - 75; FULL TEXT
(DEKTAK, KAUFMAN, RIE-CHLORINE, NANOCALC, RIGAKU9, KEITHLEY-4200) -
EHLICH, J.; MIGLIACCIO, L.; SAHALIANOV, I.; NIKIĆ, M.; BRODSKÝ, J.; GABLECH, I.; VU, X.; INGEBRANDT, S.; GLOWACKI, E., 2022: Direct measurement of oxygen reduction reactions at neurostimulation electrodes. JOURNAL OF NEURAL ENGINEERING 19(3), p. 36045 - 15, doi: 10.1088/1741-2552/ac77c0; FULL TEXT
(KAUFMAN, MAGNETRON)
-
Holobrádek, J., 2022: Low damping magnonic (meta)materials with enhanced control over local magnetic properties. TREATISE TO STATE DOCTORAL EXAM , p. 1 - 26
(VERIOS, HELIOS, KERR-MICROSCOPE, MAGNETRON, KAUFMAN) -
Dhankhar, M.;, 2021: Magnetic vortex based memory device. PH.D. THESIS , p. 1 - 100; FULL TEXT
(KERR-MICROSCOPE, DWL, MIRA-EBL, RAITH, KAUFMAN, EVAPORATOR, MAGNETRON, ALD, WIRE-BONDER, SUSS-RCD8, ICON-SPM) -
GABLECH, I.; KLEMPA, J.; PEKÁREK, J.; VYROUBAL, P.; HRABINA, J.; HOLÁ, M.; KUNZ, J.; BRODSKÝ, J.; NEUŽIL, P., 2020: Simple and efficient AlN-based piezoelectric energy harvesters. MICROMACHINES 11(2), p. 1 - 10, doi: 10.3390/mi11020143; FULL TEXT
(DRIE, RIE-CHLORINE, WIRE-BONDER, KAUFMAN) -
Chmela, O., 2020: Progress toward the development of single nanowire-based arrays for gas sensing applications. PH.D THESIS , p. 1 - 199
(ALD, DWL, KAUFMAN, DIENER, SUSS-MA8, SUSS-RCD8, RAITH, MAGNETRON, EVAPORATOR, RIE-FLUORINE, SCIA, DEKTAK, NANOCALC, MPS150, WIRE-BONDER, ICON-SPM) -
GABLECH, I.; SVATOŠ, V.; CAHA, O.; DUBROKA, A.; PEKÁREK, J.; KLEMPA, J.; NEUŽIL, P.; SCHNEIDER, M.; ŠIKOLA, T., 2019: Preparation of high-quality stress-free (001) aluminum nitride thin film using a dual kaufman ion-beam source setup. THIN SOLID FILMS 670, p. 105 - 8, doi: 10.1016/j.tsf.2018.12.035; FULL TEXT
(KAUFMAN, RIGAKU9, WOOLLAM-VIS, ICON-SPM) -
GABLECH, I.; KLEMPA, J.; PEKÁREK, J.; VYROUBAL, P.; KUNZ, J.; NEUŽIL, P., 2019: Aluminum nitride based piezoelectric harvesters. 2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS) (001), p. 1 - 4, doi: 10.1109/PowerMEMS49317.2019.82063211368; FULL TEXT
(DIENER, DRIE, DWL, KAUFMAN, RIE-CHLORINE, SUSS-MA8) -
DHANKHAR, M.; VAŇATKA, M.; URBÁNEK, M., 2018: Fabrication of Magnetic Nanostructures on Silicon Nitride Membranes for Magnetic Vortex Studies Using Transmission Microscopy Techniques. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE (137), p. 1 - 7, doi: 10.3791/57817; FULL TEXT
(MIRA-EBL, EVAPORATOR, TITAN, KAUFMAN) -
CHMELA, O.; SADÍLEK, J.; SAMA, DOMENECH-GIL, G.; J.; SOMER, J.; MOHAN, R.; ROMANO-RODRIGUEZ, A.; HUBÁLEK, J.; VALLEJOS VARGAS, S., 2018: Selectively arranged single-wire based nanosensor array systems for gas monitoring. NANOSCALE 10(19), p. 9087 - 10, doi: 10.1039/c8nr01588k; FULL TEXT
(RAITH, DWL, KAUFMAN, MAGNETRON, SCIA, RIE-FLUORINE, WIRE-BONDER, RIGAKU3) -
Bendova, M.; Kolar, J.; Marik, M.; Lednicky, T.; Mozalev, A., 2018: Influence of nitrogen species on the porous-alumina-assisted growth of TiO 2 nanocolumn arrays. ELECTROCHIMICA ACTA 281, p. 796 - 809, doi: 10.1016/j.electacta.2018.05.197
(KAUFMAN, HELIOS, TITAN, RIGAKU9, KRATOS-XPS) -
GABLECH, I.; CAHA, O.; SVATOŠ, V.; PRÁŠEK, J.; PEKÁREK, J.; NEUŽIL, P.; ŠIKOLA, T., 2018: Preparation of [001] Oriented Titanium Thin Film for MEMS Applications by Kaufman Ion-beam Source. 9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2017) , p. 117 - 6; FULL TEXT
(KAUFMAN, RIGAKU9) -
GABLECH, I.; CAHA, O.; SVATOŠ, V.; PEKÁREK, J.; NEUŽIL, P.; ŠIKOLA, T., 2017: Stress-free deposition of [001] preferentially oriented titanium thin film by Kaufman ion-beam source. THIN SOLID FILMS 638, p. 57 - 6, doi: 10.1016/j.tsf.2017.07.039; FULL TEXT
(KAUFMAN, RIGAKU9, ICON-SPM) -
CHMELA, O.; SADÍLEK, J.; VALLEJOS VARGAS, S.; HUBÁLEK, J., 2017: Microelectrode array system as platforms for single nanowire based sensors. JOURNAL OF ELECTRICAL ENGINEERING
68(2), p. 158 - 5, doi: 10.1515/jee-2017-0023; FULL TEXT
(DWL, KAUFMAN, MPS150, RIGAKU3) -
Chmela, O; Sadilek, J; Sama, J; Romano-Rodriguez, A; Hubalek, J; Vallejos, S, 2017: Nanosensor array systems based on single functional wires selectively integrated and their sensing properties to C2H6O and NO2. NANOTECHNOLOGY VIII 10248, doi: 10.1117/12.2265000
(RAITH, DWL, KAUFMAN, SCIA, RIE-FLUORINE, MAGNETRON, RIGAKU3) -
GABLECH, I.; SVATOŠ, V.; CAHA, O.; HRABOVSKÝ, M.; PRÁŠEK, J.; HUBÁLEK, J.; ŠIKOLA, T., 2016: Preparation of (001) preferentially oriented titanium thin films by ion-beam sputtering deposition on thermal silicon dioxide. JOURNAL OF MATERIALS SCIENCE 51(7), p. 3329 - 8, doi: 10.1007/s10853-015-9648-y; FULL TEXT
(KAUFMAN, RIGAKU9, ICON-SPM) -
Gablech, I., 2016: CMOS compatible piezoelectric resonator with FET structure for graphene monolayer properties modulation. TREATISE TO STATE DOCTORAL EXAM , p. 1 - 31
(KAUFMAN, RIGAKU9, ICON-SPM)
Photogallery
Specification
Features
Base pressure | 1.2 x 10−8 mbar |
---|---|
Process pressure | 10−5 – 10−4 mbar |
5*10−5 Radiation heater | Up to 350 °C (real. temp. on substrate) |
Available targets | Ti, Al, W, Hf, Ta, Zr |
Gases | Argon (7.0), Nitrogen (7.0) |
Deposition rate |
0.03 – 1.50 Å/s (based on material)
|
Beam voltage | 100 – 1200 V |
Beam current | 5 – 120 mA |
Wafer technology | 1 – 4 inch |
Documents
Here is place for your documents.