Resist stripper Diener electronic NANO Plasma cleaner (DIENER)
Guarantor:
Marek Eliáš, Ph.D.
Instrument status:
Operational, 9.2.2018 16:38
Equipment placement:
CEITEC Nano - C1.30
Diener NANO Plasma Cleaner with microwave generator can be used for stripping of the resist. Microwave plasma is ideal for most resist removal in modern device fabrication because it produces a very high concentration of chemically active species along with low energy ion bombardment. Therefore, it guarantees fast ash rate and a damage-free plasma cleaning. Microwave plasma systems are suitable for various substrate technologies like Si, III/V-compounds, quartz, ceramic, lithium niobate, copper interconnect devices etc. Oxygen plasma generates oxygen radicals and O2 ions. It is well suited for the removing of photoresist because oxygen radicals fast etch polymers and organics under formation of CO2 and water (ashing). The samples (max. size 8‘‘) can be heated (up to 100 C) by the chuck in order to ease the stripping of the photoresist.
In biomedical applications, plasma cleaning is useful for achieving compatibility between synthetic biomaterials and natural tissues. Surface modification minimizes adverse reactions such as inflammation, infection, and thrombosis formation.
Publications:
-
JAKEŠOVÁ, M.; KUNOVSKÝ, O.; GABLECH, I.; KHODAGHOLY, D.; GELINAS, J.; GLOWACKI, E., 2024: Coupling of photovoltaics with neurostimulation electrodes-optical to electrolytic transduction. JOURNAL OF NEURAL ENGINEERING 21(4), doi: 10.1088/1741-2552/ad593d; FULL TEXT
(PARYLENE-SCS, MAGNETRON, SUSS-MA8, EVAPORATOR, RIE-FLUORINE, DIENER, WIRE-BONDER) -
Mahel, V., 2023: Variable MEMS aperture for electron microscopy. MASTER´S THESIS ; FULL TEXT
(DWL, DRIE, DEKTAK, DIENER, WIRE-BONDER) -
ZANGANA, S.; LEDNICKÝ, T.; BONYÁR, A., 2023: Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy. CHEMOSENSORS 11(4), p. 1 - 14, doi: 10.3390/chemosensors11040235; FULL TEXT
(VERIOS, HELIOS, RIE-FLUORINE, DIENER) -
ABUDLLAEVA, O.; SAHALIANOV, I.; EJNEBY, M.; JAKEŠOVÁ, M.; ZOZOULENKO, I.; LIIN, S.; GLOWACKI, E., 2022: Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels. ADVANCED SCIENCE , p. 1 - 14, doi: 10.1002/advs.202103132; FULL TEXT
(DIENER, EVAPORATOR, SUSS-MA8, PARYLENE-SCS, RIE-FLUORINE) -
KAUSHIK, P.; ELIÁŠ, M.; PRÁŠEK, J.; MICHALIČKA, J.; ZAJÍČKOVÁ, L., 2021: Manipulating MWCNT/TiO2 heterostructure morphology at nanoscale and its implications to NO2 sensing properties. MATERIALS CHEMISTRY AND PHYSICS 271, p. 124901-1 - 11, doi: 10.1016/j.matchemphys.2021.124901; FULL TEXT
(EVAPORATOR, PECVD-NANOFAB, DIENER, ALD, RIGAKU9, VERIOS, TITAN)
-
Brodský J., 2021: Gas sensors based on 1D and 2D materials. MASTER´S THESIS , p. 1 - 84; FULL TEXT
(DWL, DIENER, SUSS-RCD8, SUSS-MA8, EVAPORATOR, MPS150, WITEC-RAMAN, RIE-FLUORINE, DRIE, LYRA, ICON-SPM) -
VAŇATKA, M.; SZULC, K.; WOJEWODA, O.; DUBS, C.; CHUMAK, A.; KRAWCZYK, M.; DOBROVOLSKIY, O.; KLOS, J.; URBÁNEK, M., 2021: Spin-Wave Dispersion Measurement by Variable-Gap Propagating Spin-Wave Spectroscopy. PHYSICAL REVIEW APPLIED 16(5), p. 054033-1 - 10, doi: 10.1103/PhysRevApplied.16.054033; FULL TEXT
(VNA-MPI, BRILLOUIN, RAITH, EVAPORATOR, MAGNETRON, DIENER, VERIOS, RIE-FLUORINE) -
Chmela, O., 2020: Progress toward the development of single nanowire-based arrays for gas sensing applications. PH.D THESIS , p. 1 - 199
(ALD, DWL, KAUFMAN, DIENER, SUSS-MA8, SUSS-RCD8, RAITH, MAGNETRON, EVAPORATOR, RIE-FLUORINE, SCIA, DEKTAK, NANOCALC, MPS150, WIRE-BONDER, ICON-SPM) -
BARTOŠÍK, M.; MACH, J.; PIASTEK, J.; NEZVAL, D.; KONEČNÝ, M.; ŠVARC, V.; ENSSLIN, K.; ŠIKOLA, T., 2020: Mechanism and Suppression of Physisorbed-Water-Caused Hysteresis in Graphene FET Sensors. ACS SENSORS 5(9), p. 2940 - 10, doi: 10.1021/acssensors.0c01441; FULL TEXT
(EVAPORATOR, DWL, DIENER) -
GABLECH, I.; KLEMPA, J.; PEKÁREK, J.; VYROUBAL, P.; KUNZ, J.; NEUŽIL, P., 2019: Aluminum nitride based piezoelectric harvesters. 2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS) (001), p. 1 - 4, doi: 10.1109/PowerMEMS49317.2019.82063211368; FULL TEXT
(DIENER, DRIE, DWL, KAUFMAN, RIE-CHLORINE, SUSS-MA8) -
Brodský, J., 2019: Characterization of graphene elecrical properties on MEMS structures. BACHELOR´S THESIS , p. 1 - 50
(MPS150, WITEC-RAMAN, EVAPORATOR, DRIE, PECVD, DWL, SUSS-MA8, RIE-FLUORINE, RIE-CHLORINE, DIENER, SCIA) -
Procházka, P., 2018: Fabrication of graphene and study of its physical properties. PH.D. THESIS , p. 1 - 139
(ALD, DIENER, EVAPORATOR, MIRA-EBL, PECVD, TERS, WIRE-BONDER) -
STARÁ, V.; PROCHÁZKA, P.; MAREČEK, D.; ŠIKOLA, T.; ČECHAL, J., 2018: Ambipolar remote graphene doping by low-energy electron beam irradiation. NANOSCALE 10(37), p. 17520 - 5, doi: 10.1039/c8nr06483k; FULL TEXT
(ALD, DIENER, DWL, EVAPORATOR) -
PODEŠVA, P.; GABLECH, I.; NEUŽIL, P., 2018: Nanostructured Gold Microelectrode Array for Ultrasensitive Detection of Heavy Metal Contamination. ANALYTICAL CHEMISTRY 90(2), p. 1161 - 7, doi: 10.1021/acs.analchem.7b0372; FULL TEXT
(SUSS-MA8, DWL, SCIA, DIENER) -
SVATOŠ, V.; GABLECH, I.; ILIC, B; PEKÁREK, J.; NEUŽIL, P., 2018: In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature. JOURNAL OF APPLIED PHYSICS 123(11), p. 114503-1 - 8, doi: 10.1063/1.5016465; FULL TEXT
(EVAPORATOR, DIENER) -
PROCHÁZKA, P.; MAREČEK, D.; LIŠKOVÁ, Z.; ČECHAL, J.; ŠIKOLA, T., 2017: X-ray induced electrostatic graphene doping via defect charging in gate dielectric. SCIENTIFIC REPORTS 7, p. 1 - 7, doi: 10.1038/s41598-017-00673-z; FULL TEXT
(MIRA-EBL, DIENER, ALD, WIRE-BONDER) -
MACH, J.; PROCHÁZKA, P.; BARTOŠÍK, M.; NEZVAL, D.; PIASTEK, J.; HULVA, J.; ŠVARC, V.; KONEČNÝ, M.; KORMOŠ, L.; ŠIKOLA, T., 2017: Electronic transport properties of graphene doped by gallium. NANOTECHNOLOGY 28(41), p. 1 - 10, doi: 10.1088/1361-6528/aa86a4; FULL TEXT
(DIENER, DWL, EVAPORATOR, WIRE-BONDER, LYRA) -
Kvapil, M., 2015: Plasmonic Antennas. PH.D. THESIS , p. 1 - 104
(FTIR, NANOCALC, TERS, DIENER, LYRA) -
Švarc, V., 2015: Shielding effect of oxide isolating layer on surface potential measured by Kelvin probe force microscopy. MASTER´S THESIS , p. 1 - 50
(ALD, DIENER, WIRE-BONDER, LYRA) -
Lišková, Z., 2015: Fabrication of Nanostructures and Nanodevices for Nanoelectronics and Spintronics. PH.D. THESIS , p. 1 - 106
(MIRA-EBL, DIENER, NANOCALC, DWL, EVAPORATOR, WIRE-BONDER, ALD, LYRA) -
Kormoš, L., 2015: Application of Graphene Membrane in Nanoelectronic Devices. MASTER´S THESIS , p. 1 - 59
(DIENER, WIRE-BONDER, LYRA)
Photogallery
Specification
microwave source at frequency 2.45 GHz | max. power 300 W |
---|---|
substrate temperature | from RT to 90 °C |
sample size | up to 6" |
gases: | Ar,O2 |
Processes | cleaning and activation surface |
Cleaning
Cleaning – Metal
Metal | Aluminium | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
Gold | O2/Ar | ||
Stainless steel | O2 |
Cleaning – Plastic
Plastic | ABS | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
PA | |||
PE | |||
POM | |||
PP |
Cleaning – Other
Other | Al2O3 | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
SiO2 |
Activation
Activation – Metal
Metal | Aluminium | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
Gold | O2/Ar | ||
Stainless steel | O2 |
Activation – Plastic
Plastic | ABS | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
PA | |||
PE | |||
POM | |||
PP |
Activation – Other
Other | Al2O3 | O2 | 0.2 – 0.5 mbar |
---|---|---|---|
SiO2 | |||
Powder |
Etching
Etching – Metal
Metal | Copper | Ar | 0.2 – 0.4 mbar |
---|---|---|---|
Iron (Fe, Ni) | Ar + O2 | 0.2 – 0.5 mbar | |
Silver | Ar | 0.2 – 0.5 mbar |
Etching – Plastic
Plastic | PPS | O2 | 0.1 – 0.4 mbar |
---|
Documents
Here is place for your documents.