Hysitron TI 950 (NANOINDENTER)
Guarantor:
M.Sc. Saeed Mirzaei, Ph.D.
Instrument status:
Operational, 21.4.2021 09:19
Equipment placement:
CEITEC Nano - C1.22
The proposed set of technologies represents a complex, versatile and effective nano- and micromechanical characterization tool for a wide range of possible applications of bulk materials and thin films (polymeric, metallics, composite components of MEMS/NEMS etc.)
Publications:
-
Rogl, G.; Bursikova, V.; Yubuta, K.; Murayama, H.; Sato, K.; Yamamoto, W.; Yasuhara, A.; Rogl, P., 2024: In-situ observation of temperature dependent microstructural changes in HPT-produced p-type skutterudites. JOURNAL OF ALLOYS AND COMPOUNDS 977, doi: 10.1016/j.jallcom.2024.173431; FULL TEXT
(NANOINDENTER) -
RONOH, K.; NOVOTNÝ, J.; MRŇA, L.; KNÁPEK, A.; SOBOLA, D., 2024: Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablation. MATERIALS RESEARCH EXPRESS 11(1), doi: 10.1088/2053-1591/ad184b; FULL TEXT
(DEKTAK, MIRA-STAN, KRATOS-XPS, NANOINDENTER) -
Kuptsov, K. A.; Antonyuk, M. N.; Sheveyko, A. N.; Bondarev, A. V.; Shtansky, D. V., 2023: Influence of TiC Addition on Corrosion and Tribocorrosion Resistance of Cr2Ti-NiAl Electrospark Coatings. COATINGS 13(2), doi: 10.3390/coatings13020469; FULL TEXT
(TITAN, HELIOS, NANOINDENTER) -
Sharifahmadian, O.; Pakseresht, A.; Mirzaei, S.; Eliáš, M.; Galusek, D., 2023: Mechanically robust hydrophobic fluorine-doped diamond-like carbon film on glass substrate. DIAMOND AND RELATED MATERIALS 138, doi: 10.1016/j.diamond.2023.110252; FULL TEXT
(KRATOS-XPS, VERIOS, SEE-SYSTEM, NANOINDENTER, RIE-FLUORINE) -
Bodner, S. C.; Hlushko, K.; Van De Vorst, L. T.G.; Meindlhumer, M.; Todt, J.; Nielsen, M. A.; Hooijmans, J. W.; Saurwalt, J. J.; Mirzaei, S.; Keckes, J., 2022: Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloys. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 21, p. 4846 - 4859, doi: 10.1016/j.jmrt.2022.11.064; FULL TEXT
(NANOINDENTER)
-
Plichta, T.; Zahradnicek, R.; Cech, V., 2022: Surface topography affects the nanoindentation data. THIN SOLID FILMS 745, doi: 10.1016/j.tsf.2022.139105; FULL TEXT
(HELIOS, NANOINDENTER) -
Bondarev, A. V.; Antonyuk, M. N.; Kiryukhantsev-Korneev, Ph V.; Polcar, T.; Shtansky, D. V., 2021: Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer. APPLIED SURFACE SCIENCE 541, doi: 10.1016/j.apsusc.2020.148526; FULL TEXT
(VERIOS, HELIOS, KRATOS-XPS, NANOINDENTER) -
SMOLIK, J.; KNOTEK, P.; SCHWARZ, J.; ČERNOŠKOVÁ, E.; KUTÁLEK, P.; KRÁLOVÁ, V.; TICHÝ, L., 2021: Laser direct writing into PbO-Ga2O3 glassy system: Parameters influencing microlenses formation. APPLIED SURFACE SCIENCE 540, p. 148368-1 - 9, doi: 10.1016/j.apsusc.2020.148368; FULL TEXT
(NANOINDENTER) -
Yavas, H.; Fraile, A.; Huminiuc, T.; Sen, H. S.; Frutos, E.; Polcar, T., 2019: Deformation-Controlled Design of Metallic Nanocomposites. ACS APPLIED MATERIALS AND INTERFACES 11(49), p. 46296 - 46302, doi: 10.1021/acsami.9b12235
(NANOINDENTER, TITAN, HELIOS) -
Mouralova K., Benes L., Bednar J., Zahradnicek R., Prokes T., Matousek R., Hrabec P., Fiserova Z., Otoupalik J., 2019: Using a DoE for a comprehensive analysis of the surface quality and cutting speed in WED-machined hadfield steel. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 33(5), p. 2371 - 2386, doi: 10.1007/s12206-019-0437-4
(TITAN, TEGRAMIN, NANOINDENTER, HELIOS, LYRA) -
Mouralova, K.; Benes, L.; Zahradnicek, R.; Bednar, J.; Hrabec, P.; Prokes, T.; Matousek, R.; Fiala, Z., 2018: Quality of surface and subsurface layers after WEDM aluminum alloy 7475-T7351 including analysis of TEM lamella. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 99(9-12), p. 2309 - 2326, doi: 10.1007/s00170-018-2626-1
(HELIOS, TITAN, TEGRAMIN, NANOINDENTER, LYRA, ICON-SPM)
Photogallery
Specification
Hysitron's TI 950 TriboIndenter Features:
Quasistatic nanoindentation – Measure Young’s modulus, hardness, fracture toughness, and other mechanical properties via nanoindentation.
Scratch testing – Quantify scratch resistance, critical delamination forces, and friction coefficients with simultaneous normal and lateral force and displacement monitoring.
Top-down optics – High- resolution, colour CCD camera for individual structure identification and coarse test positioning.
SPM imaging – In-situ imaging using the indenter tip provides nanometer precision test positioning and surface topography information
Dual head testing capability for true nano/micro-scale connectivity
Active vibration isolation system providing environmental separation
Available modules:
nanoDMA – Investigate time-dependent properties of materials using a dynamic testing technique designed specifically for polymers and biomaterials
Modulus Mapping – Obtain quantitative maps of the storage and loss stiffness and moduli from a single SPM scan 3D OmniProbe – Provides forces up to 10 N and scratch lengths up to 150 mm for depth- sensing micro-indentation and tribological studies
nanoECR – Conductive nanoindentation system capable of providing simultaneous in-situ electrical and mechanical measurements for investigating material deformation and stress-induced transformation behaviour
Thermal control – Heating/cooling stages can be added for the investigation of mechanical properties at non-ambient temperatures
Vacuum stage – Wafer mounting system that eliminates the necessity of glueing or cutting wafers prior to testing
Long probes that allow to safely investigate the mechanical properties of samples immersed in water.
Reference:
http://www.hysitron.com/products/ti-series/ti-950-triboindenter
Documents
Prior measurement – Quasi-Static NanoIndentation
Minimum requirements to use NanoIndenter recommended for new users at CEITEC Nano RI