E-beam writer RAITH150 Two (RAITH)
Guarantor:
Zuzana Lišková, Ph.D.
Instrument status:
Operational, 29.11.2024 14:01
Equipment placement:
CEITEC Nano - C1.29
Raith 150 Two is high-resolution low voltage electron beam lithography (EBL) and metrology system. It is suitable for the research and development of MEMS, micro and nanoelectronic, plasmonic, photonic systems, and integrated optical devices. It comes with sample holders capable of mounting up to 6´ substrate. The fabrication of 20 nm structures is guaranteed, while it is possible to write structures down to 10 nm in size. The system also contains FBMS (fixed beam moving stage) module for the writing of long continuous patterns without stitching errors, and the proximity effect correction SW package is available for optimized writing of near objects.
Raith 150 Two is equipped with an ultra-high-resolution Carl-Zeiss Gemini electron optics system. SEM image is recorded with help of InLens and SE detectors with the resolution of 1 – 2 nm at most acceleration voltages. The range of voltages is 0,3 – 30 kV and the user can select the apertures to control the beam current. High precision writing is possible due to the laser interferometric stage with the lateral movement resolution of 2 nm and large-scale Z travel.
This EBL system is suitable for long, time-demanding exposures also thanks to its split room setup, which ensures environmental isolation together with temperature stabilization.
Publications:
-
Singh, A.; Němec, H.; Kunc, J.; Kužel, P., 2024: Nanoscale terahertz conductivity and ultrafast dynamics of terahertz plasmons in periodic arrays of epitaxial graphene nanoribbons. PHYSICAL REVIEW RESEARCH 6(3), doi: 10.1103/PhysRevResearch.6.033063; FULL TEXT
(RAITH, RIE-FLUORINE) -
Rejhon, M.; Dědič, V.; Shestopalov, M.; Kunc, J.; Riedo, E., 2024: Impact of metastable graphene-diamond coatings on the fracture toughness of silicon carbide. NANOSCALE 16, p. 10590 - 10596, doi: 10.1039/D3NR06281C; FULL TEXT
(RAITH) -
Kunc, J.; Fridrišek, T.; Shestopalov, M.; Jo, J.; Park, K., 2024: Graphene–insulator–metal diodes: Enhanced dielectric strength of the Al2O3 barrier. AIP ADVANCES 14(9), p. 1 - 9, doi: 10.1063/5.0223763; FULL TEXT
(RAITH, RIE-FLUORINE, ALD, EVAPORATOR, WIRE-BONDER, KRATOS-XPS) -
KLÍMA, J.; WOJEWODA, O.; ROUČKA, V.; MOLNÁR, T.; HOLOBRÁDEK, J.; URBÁNEK, M., 2024: Zero-field spin wave turns. APPLIED PHYSICS LETTERS 124(11), doi: 10.1063/5.0189394; FULL TEXT
(BRILLOUIN, EVAPORATOR, LYRA, KERR-MICROSCOPE, RAITH, ICON-SPM) -
Krčma, J., 2024: Controlled Excitation of Magnons through Optically Induced Mie Resonances in Periodic Dielectric Nanostructures. BACHELOR´S THESIS ; FULL TEXT
(EVAPORATOR, RAITH, RIE-FLUORINE, KAUFMAN, BRILLOUIN, VERIOS)
-
WOJEWODA, O.; LIGMAJER, F.; HRTOŇ, M.; KLÍMA, J.; DHANKHAR, M.; DAVÍDKOVÁ, K.; STAŇO, M.; HOLOBRÁDEK, J.; KRČMA, J.; ZLÁMAL, J.; ŠIKOLA, T.; URBÁNEK, M., 2023: Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering. COMMUNICATIONS PHYSICS 6(1), p. 1 - 10, doi: 10.1038/s42005-023-01214-z; FULL TEXT
(RAITH, MIRA-EBL, EVAPORATOR, MAGNETRON, ALD, LYRA, ICON-SPM, BRILLOUIN) -
KNAUER, S.; DAVÍDKOVÁ, K.; SCHMOLL, D.; SERHA, R.; VORONOV, A.; WANG, Q.; VERBA, R.; DOBROVOLSKIY, O.; LINDNER, M.; REIMANN, T.; DUBS, C.; URBÁNEK, M.; CHUMAK, A., 2023: Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures. JOURNAL OF APPLIED PHYSICS 133(14), p. 1 - 8, doi: 10.1063/5.0137437; FULL TEXT
(RAITH, RIE-FLUORINE, SCIA, BRILLOUIN, EVAPORATOR, VNA-MPI) -
Kunc, J.; Morzhuk, B.; Shestopalov, M.; Fridrišek, T.; Dědič, V., 2023: Spectral current density and responsivity scaling for Fourier transform photocurrent spectroscopy. REVIEW OF SCIENTIFIC INSTRUMENTS 94(5), doi: 10.1063/5.0139027; FULL TEXT
(RAITH, MIRA-EBL, EVAPORATOR, RIE-FLUORINE) -
WOJEWODA, O.; HRTOŇ, M.; DHANKHAR, M.; KRČMA, J.; DAVÍDKOVÁ, K.; KLÍMA, J.; HOLOBRÁDEK, J.; LIGMAJER, F.; ŠIKOLA, T.; URBÁNEK, M., 2023: Phase-resolved optical characterization of nanoscale spin waves. APPLIED PHYSICS LETTERS 122(20), p. 1 - 6, doi: 10.1063/5.0151338; FULL TEXT
(RAITH, BRILLOUIN, LYRA, MAGNETRON, EVAPORATOR) -
Schánilec, V.
, 2023: Artificial arrays of magnetic nanostructures. PH.D. THESIS , p. 1 - 128; FULL TEXT
(RAITH, EVAPORATOR) -
Idesová, B., 2023: Design and fabrication of dielectric metasurfaces for ultraviolet wavelengths. MASTER´S THESIS , p. 1 - 71; FULL TEXT
(EVAPORATOR, ALD, RAITH, NANOCALC, SCIA) -
FLAJŠMAN, L.; WOJEWODA, O.; QIN, H.; DAVÍDKOVÁ, K.; URBÁNEK, M.; VAN DIJKEN, S., 2022: Wideband Brillouin light scattering analysis of spin waves excited by a white-noise RF generator. APPLIED PHYSICS LETTERS 121(23), doi: 10.1063/5.0124764; FULL TEXT
(BRILLOUIN, RAITH, EVAPORATOR) -
Sreedhara, MB.; Bukvisova, K.; Khadiev, A.; Citterberg, D.; Cohen, H.; Balema, V.; Pathak, AK.; Novikov, D.; Leitus, G.; Kaplan-Ashiri, I.; Kolibal, M.; Enyashin, AN.; Houben, L.; Tenne, R., 2022: Nanotubes from the Misfit Layered Compound (SmS)(1.)19TaS2: Atomic Structure, Charge Transfer, and Electrical Properties. CHEMISTRY OF MATERIALS 34(4), p. 1838 - 16, doi: 10.1021/acs.chemmater.1c04106; FULL TEXT
(TITAN, HELIOS, RAITH, EVAPORATOR, MPS150, KEITHLEY-4200, ALD) -
MENDOSA-SANDOVAL, E.; RODRIGUEZ-LOPEZ, G.; ORDONEZ-ROMERO, C.; LAY, D.; QURESHI, N.; URBÁNEK, M.; SOLIS-IBARRA, D.; NOGUEZ, C.; LARA-GARCIA, H.; PIRRUCCIO, G., 2022: Shaping and enhancing the photoluminescence of halide perovskite quantum dots with plasmonic lattices. JOURNAL OF MATERIALS CHEMISTRY C , p. 3704 - 9, doi: 10.1039/d1tc05331k; FULL TEXT
(RAITH, MAGNETRON, RIE-CHLORINE, LYRA) -
Zadorozhnii, O., 2021: Exchange bias in metamagnetic heterostructures. MASTER´S THESIS , p. 1 - 81; FULL TEXT
(MAGNETRON, VERSALAB, KERR-MICROSCOPE, RAITH, RIE-FLUORINE, UHV-DEPOSITION, UHV-PREPARATION, UHV-XPS, LYRA) -
Vaňatka, M., 2021: Static and dynamic properties of nanostructured magnetic materials. PH.D. THESIS , p. 1 - 113; FULL TEXT
(VERSALAB, VNA-MPI, TITAN, BRILLOUIN, MIRA-EBL, RAITH, KERR-MICROSCOPE, MAGNETRON, EVAPORATOR, VERIOS, WIRE-BONDER, LYRA) -
Dhankhar, M.;, 2021: Magnetic vortex based memory device. PH.D. THESIS , p. 1 - 100; FULL TEXT
(KERR-MICROSCOPE, DWL, MIRA-EBL, RAITH, KAUFMAN, EVAPORATOR, MAGNETRON, ALD, WIRE-BONDER, SUSS-RCD8, ICON-SPM) -
TURČAN, I.; FLAJŠMAN, L.; WOJEWODA, O.; ROUČKA, V.; MAN, O.; URBÁNEK, M., 2021: Spin wave propagation in corrugated waveguides. APPLIED PHYSICS LETTERS 118(9), p. 1 - 5, doi: 10.1063/5.0041138; FULL TEXT
(HELIOS, RAITH, KERR-MICROSCOPE, VERSALAB, VNA-MPI, BRILLOUIN, LYRA, ICON-SPM) -
VAŇATKA, M.; SZULC, K.; WOJEWODA, O.; DUBS, C.; CHUMAK, A.; KRAWCZYK, M.; DOBROVOLSKIY, O.; KLOS, J.; URBÁNEK, M., 2021: Spin-Wave Dispersion Measurement by Variable-Gap Propagating Spin-Wave Spectroscopy. PHYSICAL REVIEW APPLIED 16(5), p. 054033-1 - 10, doi: 10.1103/PhysRevApplied.16.054033; FULL TEXT
(VNA-MPI, BRILLOUIN, RAITH, EVAPORATOR, MAGNETRON, DIENER, VERIOS, RIE-FLUORINE) -
Mentes, TO.; Genuzio, F.; Schanilec, V.; Sadilek, J.; Rougemaille, N.; Locatelli, A., 2020: Coherent x-ray scattering in an XPEEM setup. ULTRAMICROSCOPY 216, p. 113035-1 - 8, doi: 10.1016/j.ultramic.2020.113035; FULL TEXT
(RAITH, EVAPORATOR) -
Tesař, J., 2020: Fabrication and characterization of atomically thin layers. MASTER´S THESIS , p. 1 - 67
(WITEC-RAMAN, MPS150, UHV-LEEM, EVAPORATOR, RAITH, WIRE-BONDER, ICON-SPM) -
Chmela, O., 2020: Progress toward the development of single nanowire-based arrays for gas sensing applications. PH.D THESIS , p. 1 - 199
(ALD, DWL, KAUFMAN, DIENER, SUSS-MA8, SUSS-RCD8, RAITH, MAGNETRON, EVAPORATOR, RIE-FLUORINE, SCIA, DEKTAK, NANOCALC, MPS150, WIRE-BONDER, ICON-SPM) -
Hache, T.; Vanatka, M.; Flajsman, L.; Weinhold, T.; Hula, T.; Ciubotariu, O.; Albrecht, M.; Arkook, B.; Barsukov, I.; Fallarino, L.; Hellwig, O.; Fassbender, J.; Urbanek, M.; Schultheiss, H., 2020: Freestanding Positionable Microwave-Antenna Device for Magneto-Optical Spectroscopy Experiments. PHYSICAL REVIEW APPLIED 13(5), p. 054009-1 - 10, doi: 10.1103/PhysRevApplied.13.054009; FULL TEXT
(RAITH, RIE-FLUORINE, EVAPORATOR, WIRE-BONDER, BRILLOUIN) -
Babocký, J., 2020: Fabrication and characterization of nanostructures with functional properties in the field of plasmonics. PH.D. THESIS , p. 1 - 104; FULL TEXT
(MIRA-EBL, RAITH, EVAPORATOR, SNOM-NANONICS, ICON-SPM) -
SCHÁNILEC, V.; CANALS, B.; UHLÍŘ, V.; FLAJŠMAN, L.; SADÍLEK, J.; ŠIKOLA, T.; ROUGEMAILLE, N., 2020: Bypassing Dynamical Freezing in Artificial Kagome Ice. PHYSICAL REVIEW LETTERS 125, p. 057203-1 - 5, doi: 10.1103/PhysRevLett.125.057203; FULL TEXT
(RAITH, EVAPORATOR, VERIOS, ICON-SPM) -
Jaskowiec, J., 2019: Spatial confinement effects in metamagnetic nanostructures. MASTER´S THESIS , p. 1 - 55
(MAGNETRON, MIRA-EBL, RAITH, CRYOGENIC, VERSALAB, ICON-SPM) -
CHMELA, O.; SADÍLEK, J.; SAMA, DOMENECH-GIL, G.; J.; SOMER, J.; MOHAN, R.; ROMANO-RODRIGUEZ, A.; HUBÁLEK, J.; VALLEJOS VARGAS, S., 2018: Selectively arranged single-wire based nanosensor array systems for gas monitoring. NANOSCALE 10(19), p. 9087 - 10, doi: 10.1039/c8nr01588k; FULL TEXT
(RAITH, DWL, KAUFMAN, MAGNETRON, SCIA, RIE-FLUORINE, WIRE-BONDER, RIGAKU3) -
Schánilec, V., 2018: Magnetic spin ice states in artificial magnetic frustrated systems. MASTER´S THESIS , p. 1 - 46
(RAITH, EVAPORATOR, VERIOS, ICON-SPM) -
Jaskowiec, J., 2017: Magnetic Force Microscopy and Transport Properties of Metamagnetic Nanostructures. BACHELOR´S THESIS , p. 1 - 47
(MAGNETRON, MIRA-EBL, RAITH, CRYOGENIC, LYRA, ICON-SPM) -
VAŇATKA, M.; URBÁNEK, M.; JÍRA, R.; FLAJŠMAN, L.; DHANKHAR, M.; IM, M.; MICHALIČKA, J.; UHLÍŘ, V.; ŠIKOLA, T., 2017: Magnetic vortex nucleation modes in static magnetic fields. AIP ADVANCES 7(10), p. 1 - 8, doi: 10.1063/1.5006235; FULL TEXT
(DWL, EVAPORATOR, RAITH, TITAN, WIRE-BONDER) -
Chmela, O; Sadilek, J; Sama, J; Romano-Rodriguez, A; Hubalek, J; Vallejos, S, 2017: Nanosensor array systems based on single functional wires selectively integrated and their sensing properties to C2H6O and NO2. NANOTECHNOLOGY VIII 10248, doi: 10.1117/12.2265000
(RAITH, DWL, KAUFMAN, SCIA, RIE-FLUORINE, MAGNETRON, RIGAKU3)
Photogallery
System specifications
Beam current range: | 5 pA – 20 nA |
---|---|
Beam energy: | 20 eV – 30 eV |
Stage travel range: | 150 x 150 x 20 mm |
Minimum line width: | < 8 nm guaranteed |
Current stability: | ≤ 0.5 % / 8 hours |
Lithography specifications
Minimum grating periodicity (20 kV/50 um write field): max. 40 nm period with less than 20 nm line width
Minimum feature size: min. line width less than 8.0 nm
Stitching accuracy (100 um write field/10 kV)
U direction: |mean| + 3sigma less than 35 nm
V direction: |mean| + 3sigma less than 35 nm
Overlay accuracy (100 um write field/10 kV)
U direction: |mean| + 3sigma less than 35 nm
V direction: |mean| + 3sigma less than 35 nm