Secondary Ion Mass Spectroscopy ION-TOF TOF.SIMS5 (SIMS)
Guarantor:
Petr Bábor, Ph.D.
Instrument status:
Operational, 5.3.2024 14:20, successful installation.
Equipment placement:
CEITEC Nano - C1.38
TOF-SIMS is an acronym for the combination of the analytical technique SIMS (Secondary Ion Mass Spectrometry) with Time-of-Flight mass analysis (TOF). The technique provides detailed elemental and molecular information about the surface, thin layers, interfaces of the sample, and gives a full three-dimensional analysis.
For a TOF-SIMS analysis, a solid surface is bombarded by primary ions of some keV energy. The primary ion energy is transferred to target atoms via atomic collisions and a so-called collision cascade is generated. Part of the energy is transported back to the surface allowing surface atoms and molecular compounds to overcome the surface binding energy. The interaction of the collision cascade with surface molecules is soft enough to allow even large and non-volatile molecules with masses up to 10,000 u to escape without or with little fragmentation.
Sputtering is achieved by a sputter beam of reactive species (O2 or Cs) at low energy for increased sensitivity, high depth resolution, and short transients. Analysis is performed by a short pulse length and small spot size ion beam for high mass and lateral resolution. By digitally scanning the bismuth analysis beam, high spatial resolution ion images of all secondary ions from the sample surface are produced. By sputtering the sample surface simultaneously by cesium or oxygen beam, images from increasing depth are obtained and hence three dimensional data are collected.
The TOF.SIMS 5 is the latest generation of high-end TOF-SIMS instruments developed by IONTOF Company. Its design guarantees optimum performance in all fields of SIMS applications. The instruments offers three ion sources offering Bi1–7+, Cs+ and O2+ and is equipped with a reflectron TOF analyzer giving high secondary ion transmission with high mass resolution (up to 11,000), a sample chamber with a 5-axis manipulator (x, y, z, rotation and tilt) for flexible navigation, charge compensation for the analysis of insulators, a secondary electron detector for SEM imaging. Samples can be heated and cooled if analysis of volatiles is needed (-130°C to + 600°C with a precision of +/- 1°C).
In a TOF-SIMS experiment the primary ion beam is pulsed to get good mass resolution. Consequently the current density and also the resulting erosion speed is very low (< 0.1nm/min). Therefore, depth profiling and 3D analysis with a TOF-SIMS instrument is done in the so-called dual beam mode. While the first beam (Cs+ or O2+) is sputtering a crater, the second beam (Bi1–7+ ) is progressively analyzing the crater bottom.
The key advantage of the dual beam mode is the possibility to adjust the analysis and the sputter parameter independ
Publications:
-
SALAMON, D.; BUKVIŠOVÁ, K.; JAN, V.; POTOČEK, M.; ČECHAL, J., 2023: Superflux of an organic adlayer towards its local reactive immobilization. COMMUNICATIONS CHEMISTRY 6(1), doi: 10.1038/s42004-023-01020-2; FULL TEXT
(KRATOS-XPS, SIMS, LYRA, LITESCOPE-LYRA) -
Kelarová, Š., 2023: Organosilicon coatings based on trimethylsilyl acetate monomer prepared using plasma of RF capacitively coupled glow discharge. PH.D. THESIS , p. 1 - 182; FULL TEXT
(WOOLLAM-MIR, FTIR, KRATOS-XPS, SIMS) -
Sen, HS.; Daghbouj, N.; Callisti, M.; Vronka, M.; Karlik, M.; Duchon, J.; Cech, J.; Lorincik, J.; Havranek, V.; Babor, P.; Polcar, T., 2022: Interface-Driven Strain in Heavy Ion-Irradiated Zr/Nb Nanoscale Metallic Multilayers: Validation of Distortion Modeling via Local Strain Mapping. ACS APPLIED MATERIALS & INTERFACES 14(10), p. 12777 - 20, doi: 10.1021/acsami.1c22995; FULL TEXT
(SIMS) -
Liška, P., 2021: Optical characterization of advanced nanomaterials with a high lateral resolution. MASTER´S THESIS , p. 1 - 91; FULL TEXT
(NANOSAM, SNOM-NANONICS, ICON-SPM, LYRA, TITAN, VERIOS, WITEC-RAMAN, KRATOS-XPS, SIMS) -
PAPEŽ, N.; DALLAEV, R.; KASPAR, P.; SOBOLA, D.; ŠKARVADA, P.; ŢĂLU, Ş.; RAMAZANOV, S.; NEBOJSA, A., 2021: Characterization of GaAs Solar Cells under Supercontinuum Long-Time Illumination . MATERIALS 14(2), p. 1 - 13, doi: 10.3390/ma14020461; FULL TEXT
(JAZ3-CHANNEL, KRATOS-XPS, WITEC-RAMAN, SIMS)
-
DAGHBOUJ, N.; CALLISTI, M.; SEN, H. S.; KARLIK, M.; ČECH, J.; VRONKA, M.; HAVRÁNEK, V.; ČAPEK, J.; MINÁRIK, P.; BÁBOR, P.; POLCAR, T., 2021: Interphase boundary layer-dominated strain mechanisms in Cu+ implanted Zr-Nb nanoscale multilayers. ACTA MATERIALIA 202, p. 317 - 14, doi: 10.1016/j.actamat.2020.10.072; FULL TEXT
(SIMS) -
Ramazanov, S.; Sobola, D.; Ţălu, Ş.; Orudzev, F.; Arman, A.; Kaspar, P.; Dallaev, R.; Ramazanov, G., 2021: Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. MICROSCOPY RESEARCH AND TECHNIQUE , p. 1 - 11, doi: 10.1002/jemt.23996; FULL TEXT
(SIMS, KRATOS-XPS, CRYOGENIC, VERIOS, LYRA) -
VANĚK, T., HÁJEK, F., DOMINEC, F., HUBÁČEK, T., KULDOVÁ, K., PANGRÁC, J., KOŠUTOVÁ, T., KEJZLAR, P., BÁBOR, P., LACHOWSKI, A., HOSPODKOVÁ, A., 2021: Luminescence redshift of thick InGaN/GaN heterostructures induced by the migration of surface adsorbed atoms. JOURNAL OF CRYSTAL GROWTH 565, p. 126151 - 6, doi: 10.1016/j.jcrysgro.2021.126151; FULL TEXT
(SIMS) -
MACKOVÁ, A.; FERNANDES, S.; MATĚJÍČEK, J.; VILÉMOVÁ, M.; HOLÝ, V.; LIEDKE, M.O.; MARTAN, J.; VRONKA, M.; POTOČEK, M.; BÁBOR, P.; BUTTERLING, M.; ATTALLAH, A.G.; HIRSCHMANN, E.; WAGNER, A.; HAVRANEK, V., 2021: Radiation damage evolution in pure W and W-Cr-Hf alloy caused by 5 MeV Au ions in a broad range of dpa. NUCLEAR MATERIALS AND ENERGY 29, p. 101085-1 - 15, doi: 10.1016/j.nme.2021.101085; FULL TEXT
(SIMS) -
Rejhon, M.; Brynza, M.; Grill, R.; Belas, E.; Kunc, J., 2021: Investigation of deep levels in semi-insulating vanadium-doped 4H-SiC by photocurrent spectroscopy. PHYSICS LETTERS A 405, doi: 10.1016/j.physleta.2021.127433; FULL TEXT
(FTIR-CHEMLAB, SIMS) -
Dallaev, R., 2021: Investigation of hydrogen impurities in PE-ALD AlN thin films by IBA methods. VACUUM 193, doi: 10.1016/j.vacuum.2021.110533; FULL TEXT
(ALD, SIMS, ICON-SPM) -
UKRAINTSEV, E.; KROMKA, A.; JANSSEN, W.; HAENEN, K.; TAKEUCHI, D.; BÁBOR, P.; REZEK, B., 2021: Electron emission from H-terminated diamond enhanced by polypyrrole grafting. CARBON 176, p. 642 - 8, doi: 10.1016/j.carbon.2020.12.043; FULL TEXT
(SIMS, NANOSAM) -
UHLÍŘ, V.; PRESSACCO, F.; ARREGI URIBEETXEBARRIA, J.; PROCHÁZKA, P.; PRŮŠA, S.; POTOČEK, M.; ŠIKOLA, T.; ČECHAL, J.; BENDOUNAN, A.; SIROTTI, F., 2020: Single-layer graphene on epitaxial FeRh thin films. APPLIED SURFACE SCIENCE 514, p. 145923-1 - 7, doi: 10.1016/j.apsusc.2020.145923; FULL TEXT
(MAGNETRON, VERSALAB, RIGAKU9, UHV-LEEM, UHV-LEIS, UHV-SPM, UHV-PREPARATION, UHV-XPS, SIMS) -
RAMAZANOV, S.; SOBOLA, D.; ORUDZHEV, F.; KNÁPEK, A.; POLČÁK, J.; POTOČEK, M.; KASPAR, P.; DALLAEV, R., 2020: Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. NANOMATERIALS 10(10), p. 1990-1 - 17, doi: 10.3390/nano10101990; FULL TEXT
(HELIOS, SIMS, KRATOS-XPS, CRYOGENIC) -
Papez, N; Gajdos, A; Sobola, D; Dallaev, R; Macku, R; Skarvada, P; Grmela, L, 2020: Effect of gamma radiation on properties and performance of GaAs based solar cells. APPLIED SURFACE SCIENCE 527, p. 146766-1 - 146766-11, doi: 10.1016/j.apsusc.2020.146766
(WOOLLAM-VIS, SIMS, FTIR, WITEC-RAMAN, LYRA) -
SOBOLA, D.; RAMAZANOV, S.; KONEČNÝ, M.; ORUDZHEV, F.; KASPAR, P.; PAPEŽ, N.; KNÁPEK, A.; POTOČEK, M., 2020: Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. MATERIALS 13(10), p. 1 - 15, doi: 10.3390/ma13102402; FULL TEXT
(SIMS, WITEC-RAMAN, LITESCOPE-LYRA, KRATOS-XPS, LYRA) -
Papež, N.; Gajdoš, A.; Dallaev, R.; Sobola, D.; Sedlák, P.; Motúz, R.; Nebojsa, A.; Grmela, L., 2020: Performance analysis of GaAs based solar cells under gamma irradiation. APPLIED SURFACE SCIENCE 510, p. 145329-1 - 145329-8, doi: 10.1016/j.apsusc.2020.145329
(WITEC-RAMAN, HELIOS, SIMS) -
Číž, T., 2020: X-ray diffraction analysis of oxide layers. MASTER´S THESIS
(KRATOS-XPS, WOOLLAM-VIS, RIGAKU9, SIMS) -
ŠETKA, M.; BAHOS, F.; MATATAGUI, D.; POTOČEK, M.; KRÁL, Z.; DRBOHLAVOVÁ, J.; GRÁCIA, I.; VALLEJOS VARGAS, S., 2020: Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. SENSORS AND ACTUATORS B: CHEMICAL 304, p. 1 - 10, doi: 10.1016/j.snb.2019.127337; FULL TEXT
(TITAN, SIMS, HELIOS, ICON-SPM) -
Dallaev, R; Sobola, D; Tofel, P; Skvarenina, L; Sedlak, P, 2020: Aluminum Nitride Nanofilms by Atomic Layer Deposition Using Alternative Precursors Hydrazinium Chloride and Triisobutylaluminum. COATINGS, MDPI 10(10), p. 954-1 - 954-14, doi: 10.3390/coatings10100954
(KRATOS-XPS, SIMS, ICON-SPM) -
Kunc, J.; Rejhon, M.; Dědič, V.; Bábor, P., 2019: Thickness of sublimation grown SiC layers measured by scanning Raman spectroscopy. JOURNAL OF ALLOYS AND COMPOUNDS 789, p. 607 - 612, doi: 10.1016/j.jallcom.2019.02.305
(DEKTAK, SIMS) -
HOLEŇÁK, R.; SPUSTA, T.; POTOČEK, M.; SALAMON, D.; ŠIKOLA, T.; BÁBOR, P., 2019: 3D localization of spinel (MgAl2O4) and sodium contamination in alumina by TOF-SIMS. MATERIALS CHARACTERIZATION 148, p. 252 - 7, doi: 10.1016/j.matchar.2018.12.019; FULL TEXT
(SIMS, VERIOS) -
DRDLÍK, D.; ROLEČEK, J.; DRDLÍKOVÁ, K.; SALAMON, D., 2018: Restraining of calcium contamination in near-net shape alumina ceramics during slip casting. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY 15(6), p. 1559 - 8, doi: 10.1111/ijac.13042; FULL TEXT
(SIMS, LYRA) -
JIANG, L.; XIAO, N.; WANG, B.; GRUSTAN-GUTIERREZ, E.; JING, X.; BÁBOR, P.; KOLÍBAL, M.; LU, G.; WU, T.; WANG, H.; HUI, F.; SHI, Y.; SONG, B.; XIE, X.; LANZA, M., 2017: High-resolution characterization of hexagonal boron nitride coatings exposed to aqueous and air oxidative environments. NANO RESEARCH 10(6), p. 2046 - 10, doi: 10.1007/s12274-016-1393-2; FULL TEXT
(NANOSAM, SIMS)
Photogallery
Specification
Typical mass resolution is 5,000 @ 29u and a spot size of < 300nm for Bi1. An ultimate mass resolution is > 11,000 @ 29u. The mass resolution at higher mass (> 200u) exceeds 16,000. An ultimate lateral resolution is ~ 80nm. An electron impact source can be operated with O2, Ar, and Xe. The minimum energy of this source is 200eV or lower to ensure optimum depth resolution. A thermal ionization Cs source. The minimum energy of this source should be 200eV or lower to ensure optimum depth resolution. The Cs source can share the optics with gas ion source. The minimum temperature has to be –150°C, the maximum temperature has to be 600°C.
Documents
Here is place for your documents.