Low Temperature Vibrating Sample Magnetometr Cryogenic Limited (CRYOGENIC)
Guarantor:
Klára Jelénková
Instrument status:
Non Operational, 19.11.2024 18:01, CRYOGENIC software update to Win 10
Equipment placement:
CEITEC Nano - C1.56
This cryogen-free magnet system (CRYOGENIC), suitable for measuring both electrical and magnetic properties of samples, allows the experimenter to achieve low temperatures 1.6K up to 400K while applying magnetic fields up to 9T to their samples.
The Cryogen-Free High Field Measurement System combines the latest cryogen-free technology with sophisticated measurement techniques providing a versatile, powerful investigative device achieving low temperatures and high magnetic fields without the use of liquid helium or nitrogen. The cryocooler provides the cooling to both the magnet and the variable temperature insert (VTI).
Available for these fields and temperature ranges are the following measurement options:
· DCR (direct current resistivity)
· VSM (vibrating sample magnetometry)
· ACS (alternative current susceptibility)
Publications:
-
Ramazanov, S.; Sobola, D.; Gajiev, G.; Orudzhev, F.; Kaspar, P.; Gummetov, A., 2023: Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. NANOMATERIALS 13(1), doi: 10.3390/nano13010139; FULL TEXT
(WITEC-RAMAN, KRATOS-XPS, CRYOGENIC) -
NEMEC, I.; KOTÁSKOVÁ, L.; HERCHEL, R., 2023: Variation of Spin-Transition Temperature in the Iron(III) Complex Induced by Different Compositions of the Crystallization Solvent. CRYSTAL GROWTH AND DESIGN 23(3), p. 1323 - 7, doi: 10.1021/acs.cgd.2c01411; FULL TEXT
(CRYOGENIC) -
Klimek, J., 2023: Pulsed laser deposition of thin films of ferromagnetic oxides and investigation of their magnetic properties. BACHELOR´S THESIS , p. 1 - 32; FULL TEXT
(ICON-SPM, KRATOS-XPS, VERSALAB, CRYOGENIC) -
POLAT, Ö.; HORÁK, M.; ARREGI URIBEETXEBARRIA, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2023: Synthesis and characterization of half-Heusler ScPtBi films via three-source magnetron co-sputtering on Nb superconductor buffer layer. SURFACES AND INTERFACES 40, doi: 10.1016/j.surfin.2023.103118; FULL TEXT
(MAGNETRON, RIGAKU9, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC, LYRA) -
MICHAL, L.; ROY, R.; HOLEC, D.; GOMEZ PEREZ, I.; PIZÚROVÁ, N.; NEČAS, D.; DOLEČKOVÁ, A.; MEDALOVÁ, J.; LEPCIO, P.; ZAJÍČKOVÁ, L., 2022: Long-Range Magnetic Order in Nickel Hydroxide-Functionalized Graphene Quantum Dots. J PHYS CHEM LETT 13(49), p. 11536 - 7, doi: 10.1021/acs.jpclett.2c02964; FULL TEXT
(KRATOS-XPS, FTIR, WITEC-RAMAN, CRYOGENIC, ICON-SPM)
-
POLAT, Ö.; MOHELSKÝ, I.; ARREGI URIBEETXEBARRIA, J.; HORÁK, M.; POLČÁK, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2022: An investigation of structural and magnetotransport features of half-Heusler ScPtBi thin films. MATERIALS RESEARCH BULLETIN 149, p. 111696-1 - 7, doi: 10.1016/j.materresbull.2021.111696; FULL TEXT
(MAGNETRON, RIGAKU9, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC, LYRA) -
HAVLÍČEK, L.; HERCHEL, R.; NEMEC, I.; NEUGEBAUER, P., 2022: Weak antiferromagnetic interaction in Cu(II) complex with semi-coordination exchange pathway. POLYHEDRON 223, doi: 10.1016/j.poly.2022.115962; FULL TEXT
(CRYOGENIC) -
ANTAL, P.; NEMEC, I.; PECHOUŠEK, J.; HERCHEL, R., 2022: New Ferrocene-Based Metalloligand with Two Triazole Carboxamide Pendant Arms and Its Iron(II) Complex: Synthesis, Crystal Structure, Fe-57 Mossbauer Spectroscopy, Magnetic Properties and Theoretical Calculations. INORGANICS 10(11), doi: 10.3390/inorganics10110199; FULL TEXT
(CRYOGENIC) -
POLAT, Ö.; ARREGI URIBEETXEBARRIA, J.; HORÁK, M.; POLČÁK, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2022: The fabrication and characterization of half-Heusler YPdBi thin films. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 161, p. 1 - 6, doi: 10.1016/j.jpcs.2021.110447; FULL TEXT
(MAGNETRON, RIGAKU9, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC, LYRA) -
Havlíček, L., 2022: Single-Molecule Magnets with Trigonal Symmetry of the Coordination Polyhedron: Structure, Magnetic Properties and Deposition on Surfaces. PH.D. THESIS , p. 1 - 101; FULL TEXT
(CRYOGENIC, KRATOS-XPS, WITEC-RAMAN) -
PENG, X.; URSO, M.; PUMERA, M., 2021: Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. SMALL METHODS 5(10), p. 2100617-1 - 9, doi: 10.1002/smtd.202100617; FULL TEXT
(MIRA-STAN, CRYOGENIC) -
Ramazanov, S.; Sobola, D.; Ţălu, Ş.; Orudzev, F.; Arman, A.; Kaspar, P.; Dallaev, R.; Ramazanov, G., 2021: Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. MICROSCOPY RESEARCH AND TECHNIQUE , p. 1 - 11, doi: 10.1002/jemt.23996; FULL TEXT
(SIMS, KRATOS-XPS, CRYOGENIC, VERIOS, LYRA) -
ZBONČÁK, M.; ONDREÁŠ, F.; UHLÍŘ, V.; LEPCIO, P.; MICHALIČKA, J.; JANČÁŘ, J., 2020: Translation of segment scale stiffening into macro scale reinforcement in polymer nanocomposites. POLYMER ENGINEERING AND SCIENCE 60(3), p. 587 - 10, doi: 10.1002/pen.25317; FULL TEXT
(MIRA-STAN, FISCHIONE-TEM-MILL, CRYOGENIC) -
RAMAZANOV, S.; SOBOLA, D.; ORUDZHEV, F.; KNÁPEK, A.; POLČÁK, J.; POTOČEK, M.; KASPAR, P.; DALLAEV, R., 2020: Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. NANOMATERIALS 10(10), p. 1990-1 - 17, doi: 10.3390/nano10101990; FULL TEXT
(HELIOS, SIMS, KRATOS-XPS, CRYOGENIC) -
Mohelský, I., 2020: Infrared magneto–spectroscopy of Bi2Te3 topological insulator. MASTER´S THESIS , p. 1 - 49
(FTIR, WOOLLAM-MIR, MAGNETRON, CRYOGENIC, KRATOS-XPS) -
Rienks, EDL.; Wimmer, S.; Sanchez-Barriga, J.; Caha, O.; Mandal, PS.; Ruzicka, J.; Ney, A.; Steiner, H. ; Albu, M.; Kothleitner, G.; Michalicka, J. ; Khan, SA.; Minar, J.; Ebert, H.; Bauer, G. ; Freyse, F.; Varykhalov, A.; Rader, O. Springholz, G. , 2019: Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. NATURE 576(7787), p. 423 - 19, doi: 10.1038/s41586-019-1826-7; FULL TEXT
(CRYOGENIC, TITAN, HELIOS, RIGAKU9) -
Jaskowiec, J., 2019: Spatial confinement effects in metamagnetic nanostructures. MASTER´S THESIS , p. 1 - 55
(MAGNETRON, MIRA-EBL, RAITH, CRYOGENIC, VERSALAB, ICON-SPM) -
Hajduček, J., 2019: Substrate-controlled nucleation of the magnetic phase transtition in nanostructures. BACHELOR´S THESIS , p. 1 - 46
(MAGNETRON, CRYOGENIC, MIRA-EBL, RIE-FLUORINE, EVAPORATOR, VERSALAB, ICON-SPM) -
Motyčková, L., 2018: Epitaxial growth and characterization of metamagnetic nanoparticles for biomedical applications. BACHELOR´S THESIS , p. 1 - 55
(MAGNETRON, CRYOGENIC, LYRA, ICON-SPM) -
Friš, P.; Munzar, D.; Caha, O.; Dubroka, A., 2018: Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry. PHYSICAL REVIEW B 97(4), p. 045137-1 - 045137-5, doi: 10.1103/PhysRevB.97.045137
(WOOLLAM-MIR, WOOLLAM-VIS, RIGAKU9, FTIR, CRYOGENIC) -
Holobrádek, J., 2017: Transport Properties of One Magnetic Nanostructures. BACHELOR´S THESIS , p. 1 - 48
(TITAN, MIRA-EBL, EVAPORATOR, WIRE-BONDER, CRYOGENIC, ICON-SPM) -
Kukolova, A., 2017: Experimental study of electronic properties of manganites and electron stimulated desorption. MASTER´S THESIS , p. 1 - 91
(WOOLLAM-MIR, WOOLLAM-VIS, CRYOGENIC) -
Jaskowiec, J., 2017: Magnetic Force Microscopy and Transport Properties of Metamagnetic Nanostructures. BACHELOR´S THESIS , p. 1 - 47
(MAGNETRON, MIRA-EBL, RAITH, CRYOGENIC, LYRA, ICON-SPM)
Photogallery:
Specification:
Instrument is comprised of the following components:
- A cryostat incorporating a cryocooler, superconducting magnet, He pot for liquid He storage and a variable temperature sample space.
- Variable temperature insert (VTI) circuit including He dump vessel and VTI pump (closed circuit, separated from lab He supply).
- Additional pumping system for cryostat vacuum, He supply and Scroll pump for sample chamber venting and evacuation and external manometer for sample chamber pressure detection.
- Rack incorporating electronics for control and monitoring of the cryostat and measurement options.
- Measurement system software.
- Measurement options (DCR, VSM, ACS) with corresponding sample probes, holders and connections.
Cryocooler system and cryostat
Cooling materials to cryogenic temperatures has traditionally used liquid cryogens (usually helium and nitrogen). The same results may be achieved more simply by mechanical means, using a cryocooler. Cryocoolers operate using a helium compressor, which requires just mains power and a source of cooling water. The cryocooler high pressure helium circuit is completely independent to the rest of the measurement system. However, it provides the cooling to both the magnet and the variable temperature insert (VTI). The cryostat is a vacuum insulated chamber whose primary function is to support and thermally shield the superconducting magnet and VTI.
Superconducting magnet
The magnet in our system is a vertically oriented solenoid wound from copper stabilised filamentary niobium titanium (NbTi) superconducting wire. The coil is cooled by the cryocooler to an operating temperature of 3–4 K.
Sample requirements:
In case of DCR there are 6-pin pucks available for samples max. 5x10 mm. DCR sample holder for these pucks has one in-plane and one out-of-plane sample orientation. The electrical connections from the sample to the puck are made by the wire bonder.
In case of VSM and ACS the sample attachment to sample holders are identical. For powder samples polypropylene capsules are used and fitted in a brass trough, other samples (e.g. thin films on substrates) can be attached to a carbon holder by a special glue (only in-plane orientation, max. sample size 5x5 mm) or fitted in straw (both in-plane and out-of-plane orientation possible, sample size limited by the straw size).
General
Field direction | Vertical |
---|---|
Magnetic field range | max. 9 T |
Maximum field ramp rate | 0.5 T/min |
Temperature range | 1.6 - 400 K |
Temperature stability | +/- 0.05 K |
Maximum temperature rate | 2 K/min |
He dump vessel pressure (system at room temperature) | Atmosphere +0.25 bar (approx.) |
He dump vessel pressure (system at base temperature) | Atmosphere -0.5 bar (approx.) |
Compressor
Compressor type | Sumitomo F-70H |
---|---|
Cold head type | 4K Pulse Tube Cold Head |
Compressor equalization pressure (system warmed up, compressor off) | 240 psig |
Compressor operating pressure (system cooled down, compressor on) | 300-310 psig |
Electronics
Temperature control | Lakeshore temperature controler model 350 |
---|---|
Temperature monitor | Lakeshore 218 temperature monitor |
Current | Keithley K2400 |
Voltage | Keithley 2182A |
Documents:
Link to official instrument manuals (access for CEITEC Nano users only after login):
official instrument manuals - CRYOGENIC
For more documentation created by CEITEC Nano see the "Document Library" section.